
CaArrayPanel.java
After establishing a connection, we will use the ExperimentSearchCriteria class to obtain
a listing of ExperimentImpl objects, each of which will be wrapped in a
CaArrayExperiment object.

1. ExperimentSearchCriteria esc = SearchCriteriaFactory.
new_EXPERIMENT_EXPERIMENT_SC();

2. SearchResult results = esc.search();
3. ExperimentImpl[] result = (ExperimentImpl[]) results.getResultSet();
4. for each ExperimentImpl exp in result instantiate a wrapped object:

 CaArrayExperiment caexp = new CaArrayExperiment(exp);
Specifically:
 caexp.e = exp;
 caexp.m_id = e.getId();
 caexp.m_name = e.getName();

When an experiment node is clicked in the experiments tree, the associated experiment
into as well as the measured and derived assays are obtained and wrapped around
CaArrayBioassay objects (using the stored pointer to the ExperimentImpl object):

1. caexp.experimentinfo = caexp.exp.getDescriptions()[0].getText().
2. caexp.measuredNum, caexp.derivedNum

 first get all BioAssay[] objects: BioAssay[] bioassays = exp.getBioAssays()
 for each BioAssay b in bioassays inspect it and increase a count:
 if (b instanceof MeasuredBioAssayImp)
 ++ caexp.measuredNum
 caexp.measuredAssays[i] = new CaArrayBioassay(b)
 if (b instanceof DerivedBioAssayImpl) � ++ caexp.derivedNum
 ++ caexp.derivedNum
 caexp.derivedAssays[i] = new CaArrayBioassay(b)

Each CaArrayBioassay object captured the following info:

1. BioAssay ba: reference to the source BioAssay object.
2. String m_id = ba.getIdentifier().
3. int dataCount // not user anywhere
4. BioAssayData[] baData // not used anywhere

Then, when a bunch of Array nodes are selected in the tree, a new CaArrayResource
object is created for each selected CaArrayBioassay, containing a reference to the source
BioAssay as well as to the containing CaArrayExperiment object.

ProjectPanel.java
At the next step we will go over each BioAssay in the CaArrayExperiment, retrieve the
BioDataCube associated with it and extract the values for the QuantitationType
“Affymetrix:QuantitationType:CHPSignal” (for derived assays) or

“Affymetrix:QuantitationType:CELIntensity” (for measured assays) for all derived and
measured arrays linked to the BioAssay.

The method
 remoteFileOpenAction(CaArrayResource[] mRes)
is invoked to create a CSMicroarraySet containing the remote arrays described by each
entry in mRes[]. Specifically, the following method is called for each BioAssay r =
mRes[i].bioAssay:
 DSMicroarray CaARRAYParser. getMicroarray (int ser, BioAssay r,
CSExprMicroarraySet maSet)

which will read in BioAssay r as the ser-th array in maSet. The following sequence of
events take place for each dba DerivedBioAssayImpl (and a similar sequence for each
mba MeasuredBioAssayImpl)

1. DerivedBioAssayData[] dbd = dba. getDerivedBioAssayData()
2. for each DerivedBioAssayData dbad = dbd[i]

a. Get the quantitation types for dbad: QuantitationType[] qtypes =
 dbdd.getQuantitationTypeDimension().getQuantitationTypes()

b. Count the design elements (aka, markers) in dbad:
 DesignElementDimension ded = dbad.getDesignElementDimension()
 DesignElement[] de = (ReporterDimension) ded.getReporters() or
 = (FeatureDimensionImpl) ded. getContainedFeatures() or
 = ((CompositeSequenceDimensionImpl) ded).getCompositeSequences()

c. Get the associated DataCube:
 BioDataValues bdv = dbad.getBioDataValues()

d. Cast bdv to an obect of type BioDataCubeImpl and proceed to read the
[ser][marker][quantType] entries:
 (Double) cube[ser][marker][quantType]

