[image: image2.jpg]@ o T wnaeny

 Use Case Document

<Insert SOW Number Here>

Software Requirement Specifications Document

Vx.x

<<Project Name>> – <<Cancer Center Name>>
DOCUMENT CHANGE HISTORY
	Version Number
	Date
	Contributor
	Description

	Vx.x
	
	
	

	
	
	
	

	
	
	
	

** Note to Document Author – Red and blue text in this document is directed at the template user to list process, build standards and help build the document. The text should be removed before submitting any formal documentation, including both draft and/or final, deliverables. ****
TABLE OF CONTENTS

21.
Background/Summary

2.
Introduction
3
Document Overview
3
Related documents
3
Application System Diagram
4
Application Core Data
4
Release Overview
4
Definitions
4
3.
caBIG requirements
5
Vocabularies and Data Elements
5
Environment
5
4.
Application Functional Requirements
6
New user creation and login
7
New User Registration
7
Logging into the System
7
Retrieving Forgotten Password
7
Contacting Administrator
8
Audit
9
5.
APPLICATION QUALITY (aka NON-functional) requirements
10
GUI Specifications
14
Security Requirements
14
Database schema
15
6.
System Architecture
17
7.
Components
20
Name of application component(s)
20
8.
Requirement Change Management
21
9.
GLOSSARY
23

1. Background/Summary

<<Insert project background and summary information>>
2. Introduction

Document Overview

The System Requirements Document (SRS) document includes detailed functional requirements for the system on ‘what’ are the behaviors based on specified end-user use cases as well as non-functional requirements such as GUI, quality & performance, usability and system behavior requirements that directly or indirectly impact the system.

<<Insert document overview information and approach in developing the Requirements to meet the key project goals. Please describe your methodology for both Functional and Quality Requirements>>
 Related documents

<<Insert other reference document(s) with location>>
	Document Name
	Version
	Location

	Vision & Scope doc.
	
	

	Use Case Specification Doc.
	
	

	Requirement Traceability Matrix
	
	

	Architecture Doc.
	
	

	Quality Requirements Specification Document
	
	

Application System Diagram

<<Insert UML diagram that depicts the different functional units of the system and the actors who perform those functions. Add reference to architecture diagram for more info. If applicable.>>
Application Core Data

<<Insert core data categories and/or dependencies with access privileges.>>

Release Overview

<<Insert the scope and objectives of the project with release information.>>

	Release
	Date Released
	Version comments

	
	
	

	
	
	

	
	
	

Definitions

Developers and Adopters are expected to clearly understand on the definitions and agree upon the ranking of the definitions used with any given requirement.

MUST - This word means that the definition is an absolute requirement of the specification.

MUST NOT - This phrase means that the definition is an absolute prohibition of the specification.

WILL - This word means that the definition is an absolute future requirement of the specification.

WILL NOT - This phrase mean that the definition is an absolute future prohibition of the specification.

SHOULD - This word means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.

SHOULD NOT - This phrase means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

MAY - This word means that a requirement is truly optional. The developer may choose to include the item based on the needs of their design.

3. caBIG requirements

<<Insert common requirements that may have direct dependency and/or constraint to build standards and inherit requirements from caBIG requirements. For examples, see below. >>

Vocabularies and Data Elements

	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Environment

All caBIG projects must be platform and database-independent applications. In the case of caTISSUE Core, it means it should be possible to run it on any operating system, should support any database and should work on any web browser.

However, considering the large number of combinations of test scenarios, caTISSUE Core must at least be certified on the following scenarios:

	Operating system
	Solaris 2.8

	
	Windows 2000, NT, XP

	
	Linux

	Database
	Oracle 9i, 10g

	
	MySQL 4.1

	Browser
	Netscape 7 and above

	
	Internet Explorer 5 and above

	Java
	1.3.1 and above

	R #
	Environment
	Application must support the environments outlined in above table

	
	
	

	
	
	

	
	
	

	
	
	

4. Application Functional Requirements
<<Insert application specific requirements that may have direct/indirect dependency and includes ALL user workflow. Add reference to Use Case Specification document as appropriate and include all the use cases in the functional requirements. Please list each requirement for each step of the workflow. >>
Use or refer to responsibility based UML activity diagrams including the documentation of ObjectsWithState (datagrams) that occur between activities and lists dependencies with Forks if applicable to split and merge into two parallel processes.>>

Note: Some examples are listed on the following pages. The formatting should be mimicked.
[image: image1.png]Cu

@-»{_Decide to order book)

m

WattorBook orger) (Process Grea Gara)
Order Arrved

Getaox) (Coethproval)

approved

Tprice OK]

‘Send Box to Customer

Enjoy book

New user creation and login

<<Insert description of this functional section. See below for an example.>>

This section describes the requirements for the following four functionalities:

1. Registration of new users

2. Logging into the system

3. Retrieving forgotten password

4. Reporting a problem without logging into the system

New User Registration

<<Insert description>>
The following requirements describe this process of ……..

	R #
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Logging into the System

<<Insert description…...>>
The following requirements describe this process of Logging into the System:

	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Retrieving Forgotten Password

<<Insert description…….>>
The following requirements describe this process
	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Contacting Administrator

<<Insert description.>>
The following requirements describe this process
	R #
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Audit

The system must be possible to audit each and every user action that results in database access (read or write). Examples include: add/edit administrative or biospecimen data, user login, query, distribution, and so forth.

The audit information must contain the following information:

1. User who performed the action

2. IP address of the computer from which the action is performed.

3. Timestamp of action

4. Object and data element (i.e. table name and column name)

5. Previous value and current value of the data element

** Note that the audit table must contain one entry per data element. In case of some use cases like edit or disable, there might be more than one entry in the audit tables per user action. For example, user updates more than one data element in one edit action.

<< Sample constraint: The administrator is the only actor who has access to read the audit data. The administrator will use the query interface to read the audit data.>>

	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

5. APPLICATION QUALITY (aka NON-functional) requirements

<<Insert application specific non-functional (Quality) requirements that may have direct/indirect dependency. Non-functional requirements include GUI specifications, Security requirements, Performance criteria, availability requirements, etc. Quality Requirements, in order to be testable and verifiable must have an associated Fit Metric and a given QR may have a Use Case-specific FM, i.e. may be associated with multiple UCs, each with a different FM (e.g. Performance or Usability QRs often have different FMs depending on the specifics of the associated UC).>>
Please refer to below list of the 18 common quality requirements that may be associated with functional requirements and/or use cases.

1. Availability

Definition: The amount or percentage of time that the System is available for use by the users. Availability may be negatively impacted by a variety of events including, but not limited to, user error, hardware failure, external system events, unavailability of support personnel, etc.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

2. Compatibility

Definition: The ability of the System under discussion to appropriately interact with others systems in its context.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

3. Completeness

Definition: For the domain of the System, the allowable maximum number or percentage of errors of omission.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

4. Correctness

Definition: The allowable maximum number or percentage of errors of commission

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

5. Cost of ownership/Return on Investment

Definition: The total costs (direct and indirect) of owning the System.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

6. Environmental

Definition: The environmental conditions in which the System must function
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

7. Extensibility

Definition: The use of the System in the same context with additional functionality.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

8. Installation Complexity

Definition: The combination of direct or indirect costs of the installation of the System

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

9. Parallel Processing

Definition: The ability of the System to fulfill requirements simultaneously using duplicated rather than shared resources.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

10. Performance
Definition: A measure of user expectations of System response times.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

11. Portability

Definition: The ability of the System to fulfill its requirements in more than one operating environment.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

12. Regulatory

Definition: The specific regulation(s) with which the System must be compliant.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

13. Reusability

Definition: The use of the System in a different context with the same functionality.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

14. Scalability

Definition: The ability of the System to fulfill its requirements for increasing numbers of users, transactions, etc.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

15. Security

Definition: The requirements of the System with respect to access control and/or other context-specific security rules and or regulations.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

16. Time To Market

Definition: The statement of the time at which the System must become available to and operable by its intended users.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

17. Training Complexity

Definition: The combination of direct or indirect costs for the training of the System’s users.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

18. Usability

Definition: The measurement of how often, how efficiently, and/or correctly people use the System.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

Some examples are listed below.

<<IF quality metrics have been used within Use Cases, please refer to those with detailed fit metric.>>
GUI Specifications

The following is a list GUI requirements to include the design, layout and usability.
	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Security Requirements

<<Insert security requirements based on user roles and responsibilities. >>
The following table contains the different kinds of user groups. (For example see below.)
	Administrator
	· Is a "super-user" who manages the application
· Has privileges to submit, edit, disable, and query all types of data in the system.
· Approves and manages user registration process.
· Has a privilege to add and modify a new module.
· Has a privilege to see all the identified data.

	Supervisor
	· Is similar to Administrator but does not have access to administrative functions.
· Has a privilege to submit, edit and disable participant and module data in the system.
· Has read only privilege to administrative data.

	Technician
	· User role assigned to an individual who is in-charge of entering data into the system.
· Handles curation, storage and distribution of samples.
· Has access to only de-identified data.

	Collector
	· User role assigned to an individual responsible for the physical collection of samples.

· Is not expected to use the system and hence does not have any access privileges

· Will be used only to fill the COLLECTED_BY data element of collection event parameter of that specimen.

	Public
	· Anyone having general research interest

· Has read-only access to aggregate data

Table 1
Application must address following security privileges by using the caBIG CSM module.

	R#
	Req. Name
	Requirement details

	Req. #
	System level Privileges
	Application must address system wide privileges by creating predefined roles and by assigning appropriate privileges to the roles. Error! Reference source not found. lists the predefined roles and associate privileges.

	Req. #
	Proprietary Privileges
	Application must address proprietary privileges by assigning the read only permission on proprietary data to specific user or group of users.

Note that the default security assignment is that all actors can view all de-identified records and that the owner of the data would need to specify that the data is not “global view” and have to restrict view to designated users.

For example, When an actor (clinician) registers a COLLECTION PROTOCOL then view privileges for that COLLECTION PROTOCOL and all children objects (SPECIMEN COLLECTION GROUP, SPECIMEN, SPECIMEN EVENTS) can be restricted to specific actors (clinicians, scientists). The exception is the administrator actor and other actors defined as technicians/supervisors.

	Req. #
	Regulatory Privileges
	Application must address regulatory privileges by reveling only de-identified data to unauthorized user.

For example, an actor (clinician) enters a PARTICIPANT onto a COLLECTION PROTOCOL. The clinician has access to all identified information for that PARTICIPANT, but does not have access to identified information for other PARTCIPANTs or to identified information for that same PARTICIPANT with respect to a different COLLECTION PROTOCOL

	Req. #
	Cascading Privileges
	It must be possible to propagate the privileges down in the hierarchy for the children objects when a particular privilege is applied to its parent object.

For example, READ permission on a COLLECTION PROTOCOL enables the READ permission to all specimens collected under that protocol.

	Role\Data
	Administrative Data
	Participant Data
	Biospecimen Data

	Administrator
	Add / Edit / View
	Add / Edit / View
	Add / Edit / View

	Supervisor
	Identified View
	Add / Edit / View
	Add / Edit / View

	Technician
	De-identified View
	De-identified View
	Add / Edit / View

Database schema

<<A script must be supplied to create the application Core database schema in an automated manner. The script must create all the necessary objects like tables, indexes, tablespaces, and any other database constraints. A separate script for each adopter should be supplied for creation of default users, roles and access privileges that is required for setting up the dependant setup and schema.>>
The following are the requirements foe the database schema:

	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

6. System Architecture
This section shall be divided into paragraphs as needed to present unit-wide design decisions.
System Architecture Overview - Explain the high-level concept of the system. Summarize the system context and system design, with diagrams if available. This section shall present unit-wide design decisions, that is, decisions about the requirement's behavioral design (how it will behave, from a user's point of view, in meeting its requirements, ignoring internal implementation) and other decisions affecting the selection and design of the software units that make up the requirement. If all such decisions are explicit in the Requirements or are deferred to the design of the requirement's software units, this section shall so state. Design decisions that respond to requirements designated critical, such as those for safety, security, or privacy, shall be placed in separate subparagraphs. If a design decision depends upon system states or modes, this dependency shall be indicated. Design conventions needed to understand the design should be presented or referenced. Examples of requirement-wide design decisions are the following:

· Design decisions on requirement behavior in response to each input or condition, including actions the requirement will perform, response times and other performance characteristics, description of physical systems modeled, selected equations/algorithms/rules, and handling of unallowed inputs or conditions.

· Other requirement-wide design decisions made in response to requirements, such as selected approach to providing required flexibility, availability, and maintainability.
Architectural Design - Show the components and the control and data flow between them. This can be part diagram and part textual - longer material can be put in an appendix. This section shall describe the requirement architectural design. If part or all of the design depends upon system states or modes, this dependency shall be indicated. If design information falls into more than one paragraph, it may be presented once and referenced from the other paragraphs. Design conventions needed to understand the design should be presented or referenced. This paragraph shall:

· Identify the software units that make up the software unit. Each software unit shall be assigned a project-unique identifier. Note: A software unit is an element in the design of a requirement; for example, a major subdivision of a requirement, a component of that subdivision, a class, object, module, function, routine, or database. Software units may occur at different levels of a hierarchy and may consist of other software units. Software units in the design may or may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities. A database may be treated as a requirement or as a software unit. The SDD may refer to software units by any name(s) consistent with the design methodology being used.

· Show the static (such as "consists of") relationship(s) of the software units. Multiple relationships may be presented, depending on the selected software design methodology (for example, in an object-oriented design, this paragraph may present the class and object structures as well as the module and process architectures of the requirement).

· State the purpose of each software unit and identify the Requirements and unit-wide design decisions allocated to it. (Alternatively, the allocation of requirements may be provided in 6.a.)

· Identify each software unit's development status/type (such as new development, existing design or software to be reused as is, existing design or software to be reengineered, software to be developed for reuse, software planned for Build N, etc.) For existing design or software, the description shall provide identifying information, such as name, version, documentation references, library, etc.

· Describe the requirement's (and as applicable, each software unit's) planned utilization of computer hardware resources (such as processor capacity, memory capacity, input/output device capacity, auxiliary storage capacity, and communications/network equipment capacity). The description shall cover all computer hardware resources included in resource utilization requirements for the requirement, in system-level resource allocations affecting the requirement, and in resource utilization measurement planning in the Software Development Plan. If all utilization data for a given computer hardware resource are presented in a single location, such as in one SDD, this paragraph may reference that source. Included for each computer hardware resource shall be:

· The Requirements or system-level resource allocations being satisfied

· The assumptions and conditions on which the utilization data are based (for example, typical usage, worst-case usage, assumption of certain events)

· Any special considerations affecting the utilization (such as use of virtual memory, overlays, or multiprocessors or the impacts of operating system overhead, library software, or other implementation overhead)

· The units of measure used (such as percentage of processor capacity, cycles per second, bytes of memory, kilobytes per second)

· The level(s) at which the estimates or measures will be made (such as software unit, requirement, or executable program)

· Identify the program library in which the software that implements each software unit is to be placed.
Interfaces - This paragraph shall be divided into the following subparagraphs to describe the interface characteristics of the software units. It shall include both interfaces among the software units and their interfaces with external entities such as systems, configuration items, and users.

The paragraphs below shall state the project-unique identifier assigned to each interface and shall identify the interfacing entities (software units, systems, configuration items, users, etc.) by name, number, version, and documentation references, as applicable. The identification shall state which entities have fixed interface characteristics (and therefore impose interface requirements on interfacing entities) and which are being developed or modified (thus having interface requirements imposed on them). One or more interface diagrams shall be provided, as appropriate, to depict the interfaces.

Design decisions regarding inputs the unit will accept and outputs it will produce, including interfaces with other systems, hardware, and users.

· External Software Interfaces - Insert text regarding any external interfaces with the software.

· Software System Interfaces - Insert text regarding software interfaces to other software systems.

· Software System Components Interfaces - Insert text regarding software interfaces to other software system components.

· Hardware Interfaces - Insert text regarding any external interfaces with the hardware.
Database Design - Reference the Database Design if applicable.
System Security - Insert the high level approach to meeting safety, security, and privacy requirements.

· Network Level - Insert the selected approach to meeting safety, security, and privacy requirements at the network level.

· Database Level - Insert the selected approach to meeting safety, security, and privacy requirements at the database level.

· Application Level - Insert the selected approach to meeting safety, security, and privacy requirements at the application level.
7. Components

This section shall describe each software unit of the requirement. If part of all of the design depends upon system states or modes, this dependency shall be indicated. If design information falls into more than one paragraph, it may be presented once and referenced from the other paragraphs. Design conventions needed to understand the design should be presented or referenced. Software units that are databases, or that are used to access or manipulate databases, are described in Appendix C. Reference the Database Design if applicable.

This is a reference for the programmer to consult. Each component will be broken down here into its parts that are described in detail. Diagrams should be included here. Use an appropriate naming convention for parts of a component. Structure this section according to the system design. ID number or requirements number may name components. Document detailed design information.

Name of application component(s)
This paragraph shall identify a requirement by a project-unique identifier and shall describe the unit. The description shall include the following information, as applicable. Alternatively, this paragraph may designate a group of requirements and identify and describe the requirements in subparagraphs. Requirements that contain other requirements may reference the descriptions of those requirements rather than repeating information.

Give the name of the component. The names should be related to the major component of which they are part. Describe each high level component. The main information given below relates to the 'external' aspects of the components that are used to specify it as a black box. Some of the items listed below may not be relevant - if so you can omit them but preserve the order given. Structure this section according to the design.
Type - State whether the component is a module, a file, a program etc.
Purpose - Insert the purpose of the component, tracing it to the software requirements.
Function - Describe what the component does.
Subordinate - List the immediate children.
Dependencies - Describe any constraints, limitations, or unusual features in the design of the software unit.
Preconditions - Describe any preconditions for using the component.
Interfaces - Define the control and data flow to and from the component. If the software unit contains, receives, or outputs data, a description of its inputs, outputs, and other data elements and data element assemblies, as applicable. Data local to the software unit shall be described separately from data input to or output from the software unit.
Graphics- Include screenshots where appropriate to show how a screen or graphic will look.
Resources - List the resources required, such as displays and printers.
References - Give references of any documents needed to understand the component.
Processing - Describe the control and data flow within the component using pseudo code or a PDL. Describe when the software unit contains logic, the logic to be used by the software unit, including, as applicable: 1) Conditions in effect within the software unit when its execution is initiated; 2) Conditions under which control is passed to other software units; 3) Response and response time to each input, including data conversion, renaming, and data transfer operations; 4) Exception and error handling 5) Sequence of operations and dynamically controlled sequencing during the software unit's operation, including:

· The method for sequence control

· The logic and input conditions of that method, such as timing variations, priority assignments

· Data transfer in and out of memory

· The sensing of discrete input signals, and timing relationships between interrupt operations within the software unit

When the software unit consists of or contains procedural commands a list of the procedural commands and reference to user manuals or other documents that explain them.
Data - Define in detail the data internal to components.
Space Estimates - Identify space estimates, if applicable.
Impact to existing components
System Security - Insert the component level approach to meeting safety, security, and privacy requirements

· Network Level - Insert the selected approach to meeting safety, security, and privacy requirements at the network level

· Database Level - Insert the selected approach to meeting safety, security, and privacy requirements at the database level

· Application Level - Insert the selected approach to meeting safety, security, and privacy requirements at the application level]

8. Requirement Change Management

<<Insert detailed process and workflow to manage change in requirements. See table example below for details that are required.>>
The following is the change configuration log for this document:

	Date
	Submitted By
	Change type
	Change ID
	Change Details
	Status

	02/08/2006
	K. Holland
	Modification
	RCM_1
	RC_Login_002 – Modified the requirement to allow unregistered users to view only records.
	Approved

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

9. GLOSSARY

<<Insert data definitions used for the application.>>

	Term
	Definition

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

7/7/2006

1 of 26

[image: image2.jpg]