
1

MAGE-TAB Specification
Version 1.1

May 31, 2011

Abstract

This is a specification for a microarray data acquisition and communication standard MAGE-TAB, considerably simpler
than MAGE-ML, but powerful enough to encode any microarray investigation and all information required for MIAME
compliance. It is proposed that MAGE-TAB becomes a part of MAGEv2, defining the ‘simple layer’ in MAGEv2. The main
guiding principles in designing MAGE-TAB are:

1. The format should be simple, but should also provide an explicit, structured representation of the details
required by the MIAME standard (see http://www.mged.org/Workgroups/MIAME/miame_checklist.html).

2. The format should support concise description of the most frequently used experimental designs in a fashion
familiar to biologists.

3. It should be possible to easily create, read, understand and edit documents in this format using only commonly
available tools, and requiring no special training in bioinformatics or computer programming.

4. The format should have a formal definition, it should be machine-readable to the level of granularity defined
by the MIAME structure, and it should be usable for communicating microarray data between different databases, data
analysis tools and other software packages.

5. The formal definition should be based on the MAGE object model and for documents that can be expressed in
MAGE-TAB there is a unique mapping to and from MAGE-ML. At the same time no general MAGE knowledge should
be needed to use MAGE-TAB format.

The proposed format is based on coding investigation designs, array descriptions, and normalized data as tab-delimited files,
while leaving raw data in native formats, and protocols largely as free texts. The most important concept at the basis of this
format is the notion of an investigation design graph (IDG) — a directed acyclic graph that shows the relationships between
different ‘biomaterials’ or data objects, for instance, showing which sample goes on which array using which label and producing
which data-file.

2

Contents

1 Introduction ... 4
2 Specification of MAGE-TAB .. 5

2.1 Overview .. 5
2.1.1 Describing “top-level” MIAME information ... 5
2.1.2 Packaging IDF and SDRF ... 5
2.1.3 Referencing files, external databases and ontology sources .. 5
2.1.4 Identifying objects in MAGE-TAB ... 5
2.1.5 Referencing objects in MAGE-TAB ... 6
2.1.6 MAGE-TAB field delimiters ... 6
2.1.7 MAGE-TAB Headers .. 6
2.1.8 MAGE-TAB encoding .. 6

2.2 Investigation Design Format (IDF) ... 7
2.2.1 IDF Specification .. 7
2.2.2 Notes on the IDF ... 8

2.3 Sample and Data Relationship Format (SDRF) .. 9
2.3.1 SDRF Specification ... 9
2.3.2 Notes on the SDRF .. 9
2.3.3 Ordering and Cardinality ... 11
2.3.4 Investigation Design Graph ... 11
2.3.5 DAG Layers .. 12
2.3.6 Coding a layered typed DAG in a spreadsheet .. 14
2.3.7 Experimental factors .. 14

2.4 Array Design Format (ADF)... 15
2.4.1 ADF Specification ... 15
2.4.2 Notes on the ADF .. 16
2.4.3 Spot Location: The concept of Feature .. 16
2.4.4 Spot Content / Spot Sequence: The concept of Reporter ... 16
2.4.5 Genomic Entities of interest: The concept of Composite Element .. 17
2.4.6 ADF classification ... 17

2.5 Protocols ... 18
2.6 Data files ... 18

2.6.1 Raw data .. 18
2.6.2 Processed data ... 18
2.6.3 Data Matrices .. 18

3 Examples and use-cases ... 21
3.1 Investigation Design Format ... 21
3.2 Conceptual examples for Investigation Design descriptions... 22

3.2.1 Example: Simple Iterated Design .. 22
3.2.2 Example: Iterated Design single channel with sample pooling ... 24
3.2.3 Example: Iterated Design dual channel ... 25
3.2.4 Example: Iterated Design, dual channel with dye swap .. 26
3.2.5 Example: Iterated Design with reference ... 27
3.2.6 Example: Iterated Design with a reference and dye swap ... 28
3.2.7 Example: Iterated Design with pooled reference ... 29
3.2.8 Example: Loop Design .. 30
3.2.9 Example: Loop Design with dye swap .. 31
3.2.10 Example: Complex Time Series .. 32
3.2.11 Example: Real-world example (ArrayExpress experiment E-MIMR-12) ... 32

3

3.3 Fully encoded examples of investigation design .. 34
3.3.1 Example: Real-world example (ArrayExpress experiment E-TABM-21) ... 34
3.3.2 Example: Real-world example (ArrayExpress experiment E-MEXP-252) ... 34
3.3.3 Example: Real-world example (ArrayExpress experiment E-MEXP-549) ... 35
3.3.4 Example: Treatment variation ... 36
3.3.5 Example: Variation in treatment application (ChIP-chip) ... 36
3.3.6 Example: Multi-layered SDRF example .. 37
3.3.7 Example: Association of data files with assays and samples ... 37
3.3.8 Example: Technology type - high-throughput sequencing .. 38

3.4 Examples of array design descriptions — Array Description Format — ADF ... 39
3.5 Real-world example of a complete MAGE-TAB document ... 40

4 Correspondence to Other Models .. 41
4.1 Mapping from MAGE-TAB to MAGEv1.1.. 41
4.2 Changes from MAGE-TAB v1.0 to MAGE-TAB v1.1 .. 41

4

1 Introduction
A MAGE-TAB document consists of four different types of files:

1. Investigation Description Format (IDF) — a plain-text, tab-delimited file providing general information
about the investigation, including its name, a brief description, the investigator’s contact details, bibliographic references,
and free text descriptions of the protocols used in the investigation.

2. Sample and Data Relationship Format (SDRF) — a plain-text, tab-delimited file (or files) describing the
relationships between samples, arrays, data, and other objects used or produced in the investigation, and providing all
MIAME information that is not provided elsewhere. This is often the least trivial part of the experiment description due
to the complex relationships which are possible between samples and their respective assays; however, for simple
experimental designs, constructing the SDRF file is straightforward, and even complex loop designs can be expressed in
this format.

3. Array Design Format (ADF) — a plain-text, tab-delimited file defining each array type used. An ADF file
describes the design of an array, e.g., what sequence is located at each position on an array and what the annotation of
this sequence is. If the investigation uses arrays for which a description has been previously provided, such as a standard
commercial array, cross-references to entries in a public repository (e.g., an Array Express accession number) can be
included instead of explicit array descriptions.

4. Data files —
i. Raw data files — binary files containing experimental data, typically in native formats defined by

the provider of the technology used (e.g. CEL format files)
ii. Processed data files — plain text, tab-delimited files generated by some processing operation,

usually on a raw data file. This includes both custom processed file formats and the MAGE-TAB specific
“data matrix” format, described below.

The main weight of the investigation description is in the SDRF. The most important concept behind the SDRF is the
investigation design graph, which is a directed acyclic graph (DAG), where nodes correspond to biomaterials (e.g., samples,
RNA extracts, labeled cDNA, etc.) or data objects (e.g., raw or normalized data files), and arcs correspond to the relationships
between these objects. Biomaterials have properties, some of which can be experimental factors. Attributes can be attached to
nodes and to arcs to describe biomaterial or data properties, e.g., sample descriptions attached to sample nodes, protocol
references attached to edges, raw data-files attached to assays. Attributes can be pointers to some longer descriptions or external
objects, e.g., protocols described in the IDF file.

The investigation design graph could be encoded in various ways, for instance using the graph mark-up language GML.
Here we use a tabular format for the following reasons:

1. The observation that large investigation designs typically have a regular structure, i.e., the same subgraph is
repeated many times (possibly with well defined modifications); moreover, the replicated structure is simple. This
observation was supported by analysis of the structure of over 1,000 different investigations in the ArrayExpress
database.

2. The degree of nodes in these graphs (i.e., the number of incoming and outgoing edges for a node), is small
(most often 1 to 4), except for a few specific nodes which are related ‘reference’ samples or extracts (e.g., ‘Reference
LE’ in Figure 24), or common source nodes (e.g., Figure 37).

3. The observation that DAGs which correspond to commonly used investigation designs have a property that
their nodes can be grouped in consecutive layers, i.e., the source nodes (the nodes in the DAG which do not have
entering edges) are in layer 1, the nodes that are connected to source nodes by an edge are in layer 2, etc. Furthermore,
the grouping can be done so that each layer only contains objects of the same type, e.g., for the graph in Figure 8(a), we
have source layer 1, sample layer 2, extract layer 3, labeled extract layer 4 and assay layer 5.

4. Similar tabular formats have been used successfully in the biosciences and are familiar to many practitioners.

Once a DAG of a regular structure has been represented in such a layered fashion, it is natural to encode it as a tab-delimited
file (a ‘spreadsheet’ in the broad sense of this word). Each column in the spreadsheet corresponds to a layer in the DAG, while
each row corresponds to a path in the graph from one of the source nodes, to one of the ‘sink’ nodes.

5

2 Specification of MAGE-TAB
Unlike the full MAGE and FuGE models, we will not start here by developing the object model explicitly. Instead, we will

discuss MAGE-TAB with the investigation design graphs as its basis. These graphs contain some extra information that is
difficult to encode in an object model, in particular:

1. the fact that investigation design cannot have loops, i.e., it is a DAG as oppose to an arbitrary oriented graph
(this property is not automatically following from the FuGE or MAGE object model);

2. the notion of layers in the graph, each in effect representing a stage in the experimental process;
3. investigation designs typically have a regular structure.

2.1 Overview
The following problems have to be solved on the document level:
• how to encode MIAME-required investigation level information;
• how to create packages of MAGE-TAB files;
• how to identify objects in MAGE-TAB;
• how to split definition of an object between investigation-level (IDF) and sample/assay level (SDRF) documents;
• how to reference objects in MAGE-TAB that are defined elsewhere (in the IDF file or in another MAGE-TAB file);
• how to describe MAGE-TAB syntax elements.

2.1.1 Describing “top-level” MIAME information
The investigation design graph will not contain everything necessary to describe investigations according to MIAME.

Overall information about investigations, protocols, and contact information does not have high volume, nor any internal
regularity. Therefore, the graph will be encoded in one file, or set of files (the SDRF), and the associated metadata will be kept in
a separate file (the IDF).

2.1.2 Packaging IDF and SDRF
The IDF file should contain a reference to the SDRFs which comprise the investigation description. This is done via the tag

“SDRF File”, which may be used to include all the SDRF files required. A typical investigation will only use one SDRF, but it is
possible to reference multiple SDRFs if the situation demands it (for example, in mixed array-based/sequencing experiments).
Data files and ADF files are referenced from the SDRF table directly. It is recommended that all data files be in a single directory
or archive with no sub-directory structure.

File names must be treated in a case-sensitive manner, to ensure cross-platform compatibility. It is recommended that files
be given filename extensions of “.idf.txt”, “.sdrf.txt” and “.adf.txt”. This is used to help software-based parsers infer the file types
as a starting point. Blank lines containing zero or more spaces or tabs are permitted in any of these files. Lines starting with the
“#” symbol are interpreted as comments.

2.1.3 Referencing files, external databases and ontology sources
File references (the SDRF File tag in the IDF, data file references in the SDRF etc.) can contain relative or absolute paths.

Relative paths may contain two dots (“..”) to refer to parent directories. For file references containing relative paths, the
referenced file must be present on the same file system. Absolute path references can refer to a URL, a local Windows file
system or local unix file system and should therefore start with a protocol (“http://domain/path”), drive letter (e.g.
“C:\Folder\Subfolder\”) or a slash (“/home/user/”) respectively. It is recommended that all MAGE-TAB documents use either
relative path references or absolute URL references, avoiding system-specific file references wherever possible.

All of the MAGE-TAB components (IDF, ADF, SDRF and data matrices) allow for referencing ontology terms or database
accessions from external sources. In each case the source of the term(s) is indicated by a separate “Term Source REF” entry. See
Table 10 and Figure 38 for examples. These tags are defined in the IDF using the “Term Source Name” tags shown in Table 1.

2.1.4 Identifying objects in MAGE-TAB
In general, the values specified for the Name columns in the SDRF will have the scope of the experiment documented by the

IDF and SDRF files. That is, they are not expected to refer to objects outside of the experiment. At times, especially for "Source

6

Name" and "Sample Name" values, a value may have a scope greater than the current experiment. For example a sample may
have been aliquoted and used in more than one experiment.

In the case a value has a greater scope than the experiment, in order to facilitate cross-referencing , one can use an LSID
construction of the name: <authority>:[<namespace>]:<object>[:<revision>] (see http://xml.coverpages.org/lsid.html for further
information).

2.1.5 Referencing objects in MAGE-TAB
Similarly as for defining the objects we need a uniform way of referencing objects that are defined in the IDF (e.g.,

Protocols). Columns should be named ending with “REF”, e.g., “Protocol REF”. In those columns only object identifiers defined
in the IDF should be used.

2.1.6 MAGE-TAB field delimiters
IDF, SDRF and ADF documents will contain data divided into columns and rows. Columns are separated by tab characters,

while lines are separated by newlines and/or carriage returns. Fields within columns may be escaped by surrounding them with
double quotes, indicating that any tab or newline characters contained therein are not to be interpreted as a field delimiter, i.e.,
that such characters are part of the content encoded by the document and not part of the document structure. Quote characters
within fields must be escaped with a backslash, like so: \”. Note that column headers are also permitted to be enclosed in double
quotes, but no characters other than spaces are permitted between the multiple keywords that comprise a column header.

2.1.7 MAGE-TAB Headers
MAGE-TAB headers (the first element of a row or a column, depending on the file type) are case-insensitive and

whitespace-insensitive (obviously excluding the tab-character, which acts as the header delimiter). Although headers will
normally be written in a human-friendly way (“Sample Name”) the capitalization of the headers and any space characters in this
header should be ignored by parsers when reading the document. Therefore, the following values are all equivalent headers:

Sample Name ~ SampleName ~ SAMPLENAME ~ samplename ~ samPLeNaMe ~ SAM PL EN A ME
Note that this only applies to the defined headers themselves. Values inside square brackets or parentheses are user-supplied

and should be treated verbosely, in a case-sensitive and spacing sensitive manner. They should not be altered or interpreted at all
when reading the file. So:

Factor Value [ORGANISM_PART] ~ factorvalue[ORGANISM_PART] !~ Factor Value [Organism Part].
Tab characters are permitted inside square brackets, but only when the header is appropriately escaped using quotes as

described in .

2.1.8 MAGE-TAB encoding
IDF, SDRF, ADF and processed data files are all plain-text files. To avoid encoding errors when reading or writing MAGE-

TAB documents, and to avoid limiting the range of characters available for use in MAGE-TAB, all MAGE-TAB files should be
encoding using UTF-8 unless otherwise specified in the IDF.

7

2.2 Investigation Design Format (IDF)

2.2.1 IDF Specification
 Value Type Cardinality
MAGE-TAB Version Text 1
Investigation Title Text 0..1
Investigation Accession Accession 0..1
Investigation Accession Term Source REF Term Source Name 0..1
Experimental Design Ontology term 0..*
Experimental Design Term Source REF Term Source Name 0..*
Experimental Design Term Accession Number Term Accession Number 0..*
Experimental Factor Name Text 0..*
Experimental Factor Type Ontology term 0..*
Experimental Factor Term Source REF Term Source Name 0..*
Experimental Factor Term Accession Number Term Accession Number 0..*

Person Last Name Text 0..*
Person First Name Text 0..*
Person Mid Initials Text 0..*
Person Email Text 0..*
Person Phone Text 0..*
Person Fax Text 0..*
Person Address Text 0..*
Person Affiliation Text 0..*
Person Roles Ontology term (semicolon-delimited list) 0..*
Person Roles Term Source REF Term Source Name 0..*
Person Roles Term Accession Number Term Accession Number 0..*

Quality Control Type Ontology term 0..*
Quality Control Term Source REF Term Source Name 0..*
Quality Control Term Accession Number Term Accession Number 0..*
Replicate Type Ontology term 0..*
Replicate Term Source REF Term Source Name 0..*
Replicate Term Accession Number Term Accession Number 0..*
Normalization Type Ontology term 0..*
Normalization Term Source REF Term Source Name 0..*
Normalization Term Accession Number Term Accession Number 0..*

Date of Experiment Date (YYYY-MM-DD) 0..1
Public Release Date Date (YYYY-MM-DD) 0..1

PubMed ID ID 0..*
Publication DOI DOI 0..*
Publication Author List Text 0..*
Publication Title Text 0..*
Publication Status Ontology term 0..*
Publication Status Term Source REF Term Source Name 0..*
Publication Status Term Accession Number Term Accession Number 0..*
Experiment Description Text 0..1

Protocol Name ID 0..*
Protocol Type Ontology term 0..*
Protocol Term Source REF Term Source Name 0..*
Protocol Term Accession Number Term Accession Number 0..*
Protocol Description Text 0..*
Protocol Parameters Text (semicolon-delimited list) 0..*
Protocol Hardware Text 0..*
Protocol Software Text 0..*
Protocol Contact Text 0..*

SDRF File File ref 0..*

Term Source Name Text tag as used in SDRF 0..*

8

Term Source File File ref 0..*
Term Source Version Text 0..*

Comment[] Text 0..*

Table 1: IDF: Allowed fields, typing and cardinalities

2.2.2 Notes on the IDF
The IDF is arranged as a tab-delimited plain-text file. The first element on each line of the file represents the tag, and

subsequent tab-separated elements represent the values associated with this tag.
In Table 1, the first column indicates the text tag that should be used in the IDF file, and the second column indicates the

type of entry expected for each row. The third column shows the cardinalities allowed for each elements – some fields can have
unlimited values, others are allowed a maximum of one value. For example, one can only supply one value for “Date of
Experiment” but one should use as many “Person Last Name” columns as there are contacts for the investigation. In cases where
multiple terms need to be entered into a single column, they should be separated by semicolons (e.g., “Protocol Parameters”,
“Person Roles”). All such semicolon-separated roles must be from one ontology.

Additional comments on Table 1:
1. All row types are optional, except for “MAGE-TAB Version”, which is required from MAGE-TAB version

1.1 onwards. (If the MAGE-TAB Version does not exist, it is assumed that it is a MAGE-TAB version 1.0 IDF file.) All
row types allow multiple values (columns), except for the rows highlighted in blue, which do not allow multiple values
to be specified. Note that fields which contain ontology individual terms should indicate the origin of those terms using
the relevant “Term Source REF” tag. Dates should be supplied in the ISO format “YYYY-MM-DD”. See Table 10 for
an example IDF.

2. The general “Comment []” field name is included as a basic extensibility mechanism for local
implementations, analogous to the use of NameValueTypes in MAGEv1. The name associated with the comment is
included in square brackets in the row name, and the value entered in the body of the IDF. Types are not currently
supported. Example use-cases for the IDF are “Comment[Goal]” to describe the specific hypothesis being tested by the
experiment, or “Comment[AnnotationFile]” to include extra annotation files (e.g. CDISC or MAGE-ML descriptions of
source materials). It is anticipated that ArrayExpress will include one or both of these fields in their own local
implementation.

3. The Comment[Character Encoding] field should be used to describe the character encoding, if an encoding
other that UTF-8 is used. If omitted, UTF-8 encoding should be assumed.

4. To specify bibliographic references accompanying the experiment, it is sufficient to enter just the PubMed ID
for each citation into the IDF. Where a given article is not yet published, the available information should be given using
the IDF tags shown.

5. All values can be entered in plain text; the typing indicates those fields that can be validated against other
criteria. A typing of “accession” indicates that a special value is attached to the value supplied – it provides a unique
identifier. Ontology Term, Term Source Name and Term Accession Number are used to indicate a value is supplied that
is defined in an external resource (usually an ontology), and that it should be possible to locate the term in the given
external resource using this information. File refs are used to indicate the supplied value references a file on the

9

2.3 Sample and Data Relationship Format (SDRF)

2.3.1 SDRF Specification

Node/Edge Associated attributes Cardinality
Source Name Characteristics, Provider, Material Type, Description, Comment 0..1
Sample Name Characteristics, Material Type, Description, Comment 0..*
Extract Name Characteristics, Material Type, Description, Comment 0..*
Labeled Extract Name Characteristics, Material Type, Description, Label, Comment 0..1
Assay Name Technology Type, Array Design File / REF, Comment 0..1
Scan Name Comment 0..*
Normalization Name Comment 0..*
Array Data File Comment 0..*
Derived Array Data File Comment 0..*
Array Data Matrix File Comment 0..*
Derived Array Data Matrix File Comment 0..*
Image File Comment 0..*
Protocol REF Term Source REF, Parameter, Performer, Date, Comment 0..*

Table 2: SDRF: Association of labels to identifiers (Node and edge columns)

Attribute Associated attributes Cardinality
Characteristics [] Unit, Term Source REF 0..*
Provider Comment 0..1
Material Type Term Source REF 0..1
Array Design File/REF Term Source REF, Comment 0..1
Technology Type Term Source REF 0..1
Label Term Source REF 0..1
Factor Value [] () Unit, Term Source REF 0..*
Performer Comment 0..1
Date 0..1
Parameter Value [] Unit, Comment, Term Source REF 0..*
Unit [] Term Source REF 0..1
Description 0..1
Term Source REF Term Accession Number 0..1
Term Accession Number 0..1
Comment [] 0..*

Table 3: SDRF: Association of labels to identifiers (Attribute columns)

2.3.2 Notes on the SDRF
The SDRF is arranged as a tab-delimited, plain-text file. It is laid out as a typical tab-delimited spreadsheet, where the first

line contains column headings separated with tab characters and each subsequent line contains values associated to the headings.
The order of columns in the SDRF explicitly follows the order of the node layers in the IDG as described in Section . The “*

Name” and “* File” node columns are linked by “Protocol REF” columns which represent the graph edges. (Protocol REF is the
only type of edge possible.) Furthermore, each node and edge column may be associated with one or more attribute columns
containing annotation, e.g., “Source Name” may be associated with “Provider”; “Parameter Value []” with “Unit”. In each case
the attribute column follows immediately after the respective node or edge column. Similarly, where ontology terms are used a
“Term Source REF” column should follow immediately to the right of the column containing the actual ontology terms (see e.g.,

10

Figure 40). Table 2 and 3 describe the column headers allowed in the SDRF spreadsheet. Examples of valid SDRF files,for a
range of typical hypothetical experiments and taken from real experiments can be found in section and .

Additional comments on tables 2 and 3:

1. “Name” columns indicate that the column contains an identifier, and “REF” columns indicate that the column
references an identifier defined elsewhere in the document.

2. Where ontology terms are used, a second column, “Term Source REF” should be used to indicate the ontology
source database or file. These ontology sources are defined in the IDF (see Section). If no ontology term source is
provided then the text is assumed to be user-defined. Also, a third column “Term Accession Number” can be used to
indicate the accession number of the term in that term source.

3. The “REF” tag is used in columns which reference objects defined in the IDF or in other MAGE documents.
The “REF” tag may be appended with a namespace tag (e.g., “REF:ebi.ac.uk:MIAMExpress:E-MEXP-438”), where the
reference is to an object external to the whole document. In the absence of a namespace tag, it is assumed that the column
references an object in the document namespace.

4. Each identifier column can be used as many times in the table as desired, so that for example a “Sample
Name” column can be followed by as many other “Sample Name” columns as are necessary to fully describe the
manipulation of materials in the investigation. See Figure 44 for an example of this.

5. Multiple “Protocol REF” columns may be used between “Name” graph node columns to indicate an ordered
set of protocols. See Figure 3 for an example of this.

6. The following columns can use the “REF” suffix to indicate that they reference identifiers defined elsewhere:
“Protocol”, “Array Design”, “Term Source”.

7. The columns “Array Design REF” and “Protocol REF” may contain identifiers defined elsewhere in the
document (in the ADF and IDF respectively). Alternatively, these columns may reference external identifiers such as
accessions from a repository database (e.g., ArrayExpress or GEO). In such cases the database should be defined in the
IDF as a Term Source, and referenced in the SDRF as “Term Source REF” associated with these columns. In cases
where the identifier is not defined in the document and no external Term Source is provided, it may be assumed that the
identifier is local to the context in which the spreadsheet is used (e.g., an ArrayExpress accession number where
submitting data to the ArrayExpress database).

8. “Characteristics” column headings should contain an ontology property term in square brackets. The source
database or file for ontology terms in these columns may be given in an adjacent “Term Source” column immediately to
the right of the “Characteristics” column. In the absence of a “Term Source” column the value is assumed to be user
defined. Multiple Characteristic columns of the same category (e.g., “Characteristics[OrganismPart]”) are allowed.
Typically the usage implies whole to part from left to right.

9. The "Technology Type" column would typically have the values' microarray' or 'sequencing assay', with a
"Term Source Ref" of OBI.

10. “Parameter Value” columns should indicate which Parameter is described by including the parameter name
declared in the IDF using square brackets (e.g., “Parameter Value [growth temp]”).

11. “Factor Value” columns should indicate which experimental factor it represents by including the relevant
“Experimental Factor Name”, defined in the IDF, in square brackets. An optional term may be appended to this in
parentheses where the factor category in the SDRF is more specific than the “Experimental Factor Type” given in the
IDF (e.g., “age” vs. “time”). The “Factor Value” columns should occur after all element nodes and the attributes of those
element nodes. A “Term Source REF” column may be used here in the same way as for “Characteristics”, discussed
above. Note that the “Experimental Factor Name must be unique within the documents (IDF and SDRF). Note that
biomaterial characteristics and protocol parameters can be factor values, but there is no requirement or ability in the
MAGE-TAB specification to enforce consistency between these columns.

12. “Unit” columns must include an ontology property term describing the unit class in square brackets. An
example of such a class term would be “TimeUnit” from the MGED Ontology.

13. In general, where square-bracketed values are associated with column headings in Table 3 (e.g.,
“Characteristics[]”, “Factor Value[]”), these values are compulsory. Values in parentheses are optional.

14. Array designs may be referenced in the spreadsheet by identifier (using “Array Design REF”) or by using
“Array Design File” to point to an included ADF file.

15. Where multiple Providers or Performers can meaningfully be attached to a Source or Protocol, respectively,
these should be included in a single column and delimited by semicolons.

16. Empty fields should simply be left blank. Fields that say “null” are not the same as empty fields.

11

17. SDRF files may be split into an arbitrary number of sub-files on any “Name” column, such that the leftmost
and rightmost columns of one file will correspond to columns in a second spreadsheet.

18. The “Comment” columns are included as a basic extensibility mechanism for local implementations,
analogous to the use of NameValueTypes in MAGEv1. The name associated with the comment is included in square
brackets in the column heading, and the value(s) entered in the body of the column. Types are not currently supported.
(Note that Comment is permitted as a row type in both the IDF and the ADF header.)

19. Comment columns could be used in various ways - to provide references to supplementary files like
PowerPoint presentations; to include identifiers of objects in external systems; to qualify the type of Protocol REF (e.g.,
growth protocol).

20. There is no MAGE-TAB Version explicitly specified in the SDRF file; it is only specified in the IDF file. The
SDRF version is required to be the same as the version specified in the corresponding IDF file.

21. Differentially dimensioned arrays, and multi-technology investigations are allowed in the same SDRF.

2.3.3 Ordering and Cardinality
Element column headers in the SDRF, except for Protocol REF, must occur in the order, and must occur with the

cardinalities that are specified in Table 2. The attributes of an element or of another attribute must follow the attributed element
or attribute without any intervening element or attribute. When an element or attribute has more than one attribute, there is no
ordering defined for that set, except:

• Factor Value: must occur after all element nodes and the attributes of those element nodes.
• Comment: must immediately follow either the element or attribute node for which it is a Comment, or another such

Comment. This permits an unambiguous association of a Comment with the element or attribute for which it is a
comment.

• Term Source REF: must immediately follow the ontology term for which it provides the source reference. This permits
an unambiguous association of the Term Source REF to the ontology term.

• Protocol REF should come directly before the Name column it is the transformation for.

2.3.4 Investigation Design Graph
Two basic notions we use in describing investigations are biomaterial and data object. The first intuitively represents a

physical material such as a sample, RNA extract, array, or hybridized array. A protocol, when applied to a biomaterial, can
generate a new biomaterial as its result. Biomaterials can also be split or pooled. For instance, one can take two samples, apply an
RNA extraction/labeling protocol to each of them, labeling with Cy3 in the first case and with Cy5 in the second case, mix them
and hybridize them on the array:

Data objects can be created from biomaterials by applying a ‘measurement’ protocol, for example, by scanning a hybridized

array to obtain feature intensities. Data objects can be transformed into new data objects by applying a data transformation
protocol; for precise definitions of these objects MAGE-TAB will refer to the Functional Genomics Experiment (FuGE) object
model that provides a higher-level class model for extension by technology-specific models such as MAGEv2.

The investigation design graph (IDG) is a general concept applicable to any investigation description, and not restricted to
microarray investigations. Effectively, the IDG represents the workflow of the investigation. The IDG is a labeled DAG, where
each node represents either a biomaterial or a data object. Each node in the IDG has an identifier plus an ordered list of labels,
each of which has a type. For instance, a node corresponding to a sample will have the sample ID and the sample properties, e.g.,
species, tissue type, extraction protocol. A label can be either a character string, or a pointer to an external object (including
ontology entries). For instance, ‘species’ will be normally described by an external ontology (NCBI taxonomy), ‘tissue type’ can

Figure 1: Two samples pooling to one hybridization

12

be either a character string or an ontology entry, while ‘protocol’ would normally be a pointer either to an external object (e.g., a
protocol accession number in a database), or to a protocol defined in the accompanying IDF document. Each node in the graph
will have a type, e.g., sample, extract, assay etc.

A question arises: How granular should the graph be? For instance, should one represent samples, extracts and labeled
extracts within the same node, or using three different nodes? In practice, the degree of granularity used in the IDG largely does
not matter, unless one of the ‘intermediate’ objects is being split or pooled. Nodes in the graph that have only one incoming and
one outgoing edge can be contracted into their predecessor nodes, by adding extra labels. Thus, unless extracts are pooled or split,
it is sufficient to show which sample is hybridized to which array.

To encode an investigation, biologists will normally use the spreadsheet representation directly, without ever drawing the
graph explicitly. However, for more complex investigation designs, thinking of them as a graph may be helpful, even if it is not
explicitly represented on paper. The graph representation is even more important if one is developing software allowing for data
export/import from one’s own database or tool.

Next we will describe how to encode the structure of the IDG in a ‘spreadsheet’ format called Sample and Data Relationship
Format (SDRF). First we will ignore labels and only consider the IDs of the graph nodes. The labels can be added later simply by
introducing extra columns in the spreadsheet, one column per label.

2.3.5 DAG Layers
One of the essential ideas behind the proposed encoding is based on the notion of a layer — each node in the DAG will be

assigned a layer numbered by 0, 1, 2, . .. , n, in a way such that if there is an arc from a node v to node w, then the node w is in a
layer higher than the node v. For instance, the layer structure of a simple DAG is shown in Figure 2.

Formally, to assign layers to nodes in a DAG, we have to solve the following problem: given a DAG G, with the set of

nodes V, assign to every node v Є V, an integer l=layer(v), such that for every two nodes v and w,

if there is an arc v -> w in G, then layer(v) < layer(w) (x)

Additionally, we want to minimize the total number of layers used. In fact the minimum number of layers equals the length
of the longest path in G.

Next we will consider typed DAGs, where each node in V belong to one of k predefined types, i.e., let type(v) Є {1, .. . k}.
In this case the problem is to assign layers to the nodes so that in addition to the property (x) above, also the following holds:

if layer(v) = layer(w), then type(v) = type(w) (y)

Again, we want to keep the total number of layers minimal. In this case the exact minimization problem is difficult, but we

will introduce a simple heuristic, which works well for the popular investigation designs.

Fi
gure 2: Layered structure of a simple DAG

13

Let us begin with some basic definitions. The nodes in a DAG that do not have any entering arcs are called source nodes ,
the nodes which do not have any exiting arcs are called sink nodes.
Algorithm to assign layers to the nodes of a DAG G ignoring the types:

• Find all the paths from any of the source nodes to any of the sink nodes in G. Let they be P1, P2, ..., Pt in the order of
non-ascending length, i.e., the length of Pi+1 is not longer than the length of Pi.

• Take the longest path v0, v1, ..., vp and assign to its nodes the layers 0, 1, ..., p respectively, i.e., layer(v0) := 0, layer(v1)
:= 1, ..., layer(vp) = p.

• Iterate:
o Take the longest path Pi, such that Pi contains at least one node with unassigned layer;
o Iterate:

 Take the first node v on this path Pi, such that v has not been assigned a layer
 If v is a source node, then assign layer(v):=0;
 Otherwise, find all nodes u1, ..., uk, such that ui -> v, and ui has assigned layer;
 assign layer(v):= max{layer(ui)}+1

One can prove that for un-typed DAGs the result satisfies the property (x) above, and that the total number of layers
assigned is p +1. (For the proof the only tricky bit is to prove that in the last step, the nodes among u1, ..., uk, that do not have a
layer assigned at the time when we are assigning layer(v):=max{layer(ui)}+1, will not be assigned layers higher than
max{layer(ui)}, but this follows from the fact that we have chosen the longest path containing nodes with unassigned layers.)

There are two source nodes A and G, and one sink node W. The longest path is A, D, E, B, C, W, therefore these nodes get
layers 0, 1, …, 5 assigned first according to our algorithm as described below. The next longest is A, D, E, F, W, the only node
that has not been assigned a layer on this path is F, which gets assigned layer(E)+1 = 3. Finally, the nodes G, H and I get layers 0,
1, 2. Note that, although node G gets a layer assigned after F, there is no conflict (as we always do the longer path first).

Next, let us consider typed, ordered DAGs. We want to rearrange our layers, if necessary so, that all the nodes in each layer

has the same type (i.e., for the property (y) above to be satisfied). We also want to impose an ordering in which the layers can
occur, and at the same time minimize the number of layers. Instead of solving the exact minimization problem, we will apply the
following heuristics. If two nodes in layer 'n' are of different types, and this cannot be resolved by moving differently-typed
nodes to a layer containing nodes of the same type, then we insert an additional layer 'n+1', obeying the required ordering of

Figure 3: A more complicated example of assigning layers to nodes in a DAG

14

layers. We then assign the node of the lower ranked type to the new layer, leaving the node of the higher rank where it was. For
instance, in Figure 3, suppose the nodes d and e in layer 2 are of different types, then we introduce an additional layer 2a (later
we can renumber the layers so that they are numbered consecutively by integers), and assign the node e to layer 2a. In the general
case, we can have a layer which contains nodes of n types, each type containing several nodes. In this case we will introduce n-1
additional layer, and put in each nodes of the respective type.

2.3.6 Coding a layered typed DAG in a spreadsheet
Once we have assigned layers to all nodes in the way that each layer contains only nodes of the same type, we can encode

this graph by a spreadsheet in a simple way. First we mark each column in the spreadsheet by the number of the layer (in an
increasing way) and with the particular type of the node in that layer. For this we need to take every pair of a source node v and
sink node w, and find the path from v to w.

In an arbitrary DAG there may be an exponential explosion of the number of possible paths, but in DAGs corresponding to
the popular investigation designs, the number of paths are roughly proportional to the number of samples used in the
investigation, making this encoding very practical.

Note that in the popular investigation designs (e.g., the ones given in the examples in the previous section), each node in the
graph belongs to only very few paths, thus meaning that the coding of the graph by a spreadsheet is compact and does not exceed
the size of the graph itself more than a few times. In fact, often the size of the coding is not larger that the size of the original
graph. Moreover, we only need to represent each arc in the graph once in the SDRF, therefore at the point when this has been
done, we stop adding new rows.

2.3.7 Experimental factors
Experimental factors are material properties and protocol parameters; i.e., values from any Characteristics or Parameter

Value column in the SDRF can be annotated as experimental factors, as described below.
The experimental factors are the principal variables in the investigation, for instance “time” in time series investigations,

“dose” in dose response investigations, “compound” in compound treatment investigations, or “disease state” (normal or
otherwise) in disease studies. The same investigation may have several experimental factors; for example, compound, dose and
time may all be experimental factors in a dose response investigation in which several compounds are added to the samples over
a time course.

Experimental factors and their values can be taken from any column in the SDRF file in (e.g., Figure 39), and are annotated
as such by also being listed in a separate “Factor Value[]” column, which in turn references an “Experimental Factor Name”
defined in the IDF. For example, the IDF linked to the SDRF in Figure 39 would include an “Experimental Factor Name” of
“Behavior” in its list of experimental factors, linked to the ontology term “innate behavior” as its “Experimental Factor Type”
(see Section). Where the values in a “Factor Value[]” column are from a more specific subcategory of the factor described in the
IDF, parentheses may be used to include the subcategory (e.g., “Factor Value [Growth condition] (media)”). While this
arrangement adds some redundancy to the specification of experimental factor values within the SDRF, it allows for such cases
where more complex experimental factors may have been used.

Biological replicates are represented by distinct biological sources, grouped together by common experimental factor values.
In contrast, technical replicates are represented by branching of the investigation design graph at intermediate steps of the
experimental processing.

The experimental factor values are the values of the respective experimental factors in a particular sample. For instance, in a
time series the values are the time points at which each measurement was taken.

Experimental factor values provide a means of annotating investigations concisely — the most important experimental
variables are clearly and accessibly defined. Moreover, one can easily represent biological replicates: these are samples which
have different sources, but exactly the same values for all experimental factors. By propagating the factor values down to data
columns in the processed data, one can annotate data concisely. For instance, if we have two experimental factors compound and
dose, each of which have two possible values, e.g., compounds c1 and c2, and low dose and high dose, then the data columns will
be annotated by combinations of these values: (c1, low), (c2, low), (c1, high), (c2, high). Where the array design itself is an
experimental factor, this should be included as a Parameter Value associated with the Assay protocol and also included in a
separate “Factor Value[]” column.

SDRF parsers should associate Factor Value annotations as specifically as possible. Two main strategies are available to
accomplish this. Firstly, factor value annotations can always be associated with the relevant assay, but typed by channel for
multi-channel array-based experiments to ensure annotations are result-specific. Alternatively, factor value attributes can be

15

associated with a node in the graph upstream of the assay, but before any pooling events take place. In practice these strategies
yield the same results, but annotations occur in different places.

Ideally, factor value columns are placed as the very last column in an SDRF spreadsheet.

16

2.4 Array Design Format (ADF)

2.4.1 ADF Specification
 Value Type Cardinality
Array Design Name Text 0..1
Version Text 0..1
Provider Text 0..1
Printing Protocol Text 0..1

Technology Type Ontology term 0..*
Technology Type Term Source REF Term Source Name 0..*
Technology Type Term Accession Number Term Accession Number 0..*
Surface Type Ontology term 0..*
Surface Type Term Source REF Term Source Name 0..*
Surface Type Term Accession Number Term Accession Number 0..*
Substrate Type Ontology term 0..*
Substrate Type Term Source REF Term Source Name 0..*
Substrate Type Term Accession Number Term Accession Number 0..*
Sequence Polymer Type Ontology term 0..*
Sequence Polymer Type Term Source REF Term Source Name 0..*
Sequence Polymer Type Term Accession Number Term Accession Number 0..*

Term Source Name Text tag as used in main ADF table 0..*
Term Source File File ref 0..*
Term Source Version Text 0..*

Comment [] Text 0..*

Table 4: ADF header: Allowed fields, typing and cardinalities.

Node/Attribute Associated attributes Cardinality
(Feature) Block Column, Block Row, Column, Row 0..1
Reporter Name Reporter Database Entry, Reporter Sequence, Reporter

Group, Control Type
0..1

Composite Element Name Composite Element Database Entry, Composite Element
Comment

0..1

Block Column 0..1
Block Row 0..1
Column 0..1
Row 0..1
Reporter Sequence 0..1
Reporter Group [] Reporter Group Term Source REF 0..*
Control Type Control Type Term Source REF 0..1
Reporter Database Entry [] 0..*
Composite Element Database Entry [] 0..*
Composite Element Comment 0..*
Reporter Group Term Source REF Reporter Group Term Accession Number 0..1
Control Type Term Source REF Control Type Term Accession Number 0..1
Reporter Group Term Accession Number 0..1
Control Type Term Accession Number 0..1

Table 5: ADF table: Association of labels to identifiers (Node and attribute columns)

Node/Attribute Associated attributes Cardinality
Composite Element Name Map2Reporters, Composite Element Database Entry, 0..1

17

Composite Element Comment
Map2Reporters 0..*
Composite Element Database Entry [] 0..*
Composite Element Comment 0..*

Table 6: ADF extended table: Association of labels to identifiers (Node and attribute columns)

2.4.2 Notes on the ADF
The ADF consists of a single plain-text, tab-delimited file arranged into three possible sections, described in tables 4-6:

1. An optional header section,
2. The main ADF table itself. This table should be preceded by a “[main]” header (section delimiter) which is

case-insensitive.
3. An optional extended ADF table, allowing for the representation of complex many-to-many Reporter –

Composite Element mappings. If present, this table should be preceded by a “[mapping]” header (section delimiter)
which is case insensitive.

The header component is formatted in a similar manner to IDF files, whereas the table and extended table components are
laid out as a spreadsheet-encoded DAG, resembling SDRF files.

Each ADF file may start with an optional header section providing some top-level information about the array design. Note
that this header contains MIAME-required information, and, as such, any ADF files lacking a header are unlikely to be MIAME-
compliant. As described for the IDF in Section , optional “Comment[]” rows may be used to provide extra information needed by
local implementations. Additional rows providing Term Source information are included in the ADF header to allow the full
encoding of array design information in the absence of any investigation-level detail. These Term Source rows are treated in the
same way as for the IDF (Section), and are used to indicate the source databases or files used for sequence database accessions
and ontology terms. As many Term Sources may be used as needed, listed horizontally in columns as for the IDF. See Table 4 for
a list of ADF header row types. All tags are optional, and a tag can have at most one value. The tags (rows) can appear in any
order, except that associated attributes must immediately follow the object they are associated with.

The ADF table section must contain columns in the order shown in Table 5. Feature nodes are unusual in that they do not
require an identifier – the position itself is unique per array. For this reason, there is no “Feature Name” column – hence the
reason Feature is shown in brackets in Table 5. Features always start with a “Block Column” attribute column.

In some array designs, it may be necessary for all Composite Element information to be split into a second table, and a new
column, “Map2Reporters” is used to list the Reporters to which each Composite Element is related. The Reporters are expressed
as a semicolon-delimited list (see Figure 52 for an example).

The “Reporter Group” ADF heading may be used to describe a variety of different group types; typical examples would be
“role” (with values “experimental” and “control”) or “species” for multi-species arrays. The types (“role” and “species”) are free-
text.

2.4.3 Spot Location: The concept of Feature
A spot location uniquely identifies a physical location in the two-dimensional space of the microarray surface. it is defined

by its coordinates in the ADF coordinates system: “Block Column”, “Block Row”, “Column”, “Row” (see Table 7).

Block Column Block Row Column Row
1 1 1 1
1 1 1 2
1 1 1 3

Table 7: ADF: Feature coordinate columns

2.4.4 Spot Content / Spot Sequence: The concept of Reporter
Synthetic sequences, used as proxies for genomic entities, can be deposited in one or more spot locations and array designs.

These elements correspond to Reporter objects in MAGE terms (i.e., a subclass of DesignElement), and it is a MIAME
requirement to publish the actual sequences physically present on the array. Therefore, a Reporter is uniquely defined by its ID

18

and its sequence. Additional information is also required by the model, such as the role (experimental or control), and, where
appropriate, the kind of control it represents.

Reporter Name Reporter Sequence Reporter Group [role] Control Type
R1 ATGGTTGGTTACGTGT Experimental
R2 CCGCGTTGCCCCGCC Experimental
R3 TCCCTTCCGTTGTCCT Control control spike calibration

Table 8: ADF: General case for oligonucleotide based microarrays

Reporter Name Reporter Database
Entry [flybase]

Reporter Group [role] Control Type

R1 Fb2353 Experimental
R2 Fb2354 Experimental
R3 Fb2345 Control control spike calibration

Table 9: ADF: General case for PCR based microarrays

2.4.5 Genomic Entities of interest: The concept of Composite Element
This section addresses the description of the biological sequence of interest which is interrogated by the synthetic probe

(Reporter) sequences. For simple microarray designs, spot location, spot sequence and genomic sequences are directly associated
in a one-to-one relationship. Interpretation is straightforward: one location, one probe, one gene or biological entity. For these
cases, all layers can be combined in a single spreadsheet, and the ADF can be considered completely and unequivocally
represented (see Figure 50 for example). However, with advances in microarray technology enabling high density printing, more
elaborate array layouts are possible. Complex association patterns between spot sequences and surveyed genomic sequences are
possible. Hybridization signals observed from series of spot sequences can be combined to provide measure estimates about
surveyed genomic sequences. The format proposed here is designed to encode simple cases where there is a one-to-one or many-
to-one mapping from Reporters (probe sequences) to Composite Elements (biologically relevant sequences). In cases where a
many-to-many mapping has been used, a fuller ADF specification will usually be required, using two separate spreadsheets as
presented in Section below (see also Figure 51 and 52 for example).

2.4.6 ADF classification
There are two major classes of array design that can be identified and encoded as ADFs , “simple” and “complex”, as

described below:

Simple design:
1. Absence of technical replicates, direct association between representative sequences and genomic sequences:

2. Technical replicates, and direct association between representative sequences and genomic sequences: In such
situations only one spreadsheet is needed, as annotation can be collapsed down a level; description of Composite
Element is not required, and the relevant Composite Element columns may be omitted from the ADF.

Figure 4: Simple one-to-one array design graph

Figure 5: Simple array design graph containing technical replicates

19

3. Absence of technical replicates, and any genomic sequence being represented by more than one representative
sequence. This use-case requires extra columns to describe the Composite Elements, and is only supported for cases
where many Reporters map to one Composite Element:

Complex design:
Presence of technical replicates, and any genomic sequence is represented by more than one synthetic representative

sequence:

This many-to-many relationship of Reporters to Composite Elements requires either the use of a supplementary table to hold

these mappings (see Section , and Figure 51 and 52), or alternatively the array design may be described using the full MAGEv2
object model. Note that this requirement applies to only a very small fraction of array designs currently held in public repositories
such as ArrayExpress, and is included here as a future-proofing measure to allow the representation of next-generation array
designs. It is anticipated that a single-spreadsheet ADF will suffice for the majority of array designs in use today.

2.5 Protocols
Protocols are encoded as a part of the IDF — see Section . Protocols are described as free text, with optional fields for

hardware, software and a free-text field for contacts. Protocols may have parameters.

2.6 Data files
The MAGE-TAB specification requires that raw data files are provided as binary or ASCII files in their native formats, such

as Affymetrix CEL files, Agilent TXT files, or GenePix GPR files, whereas processed data files may be communicated in tab-
delimited text format as data matrix files (see Section).

2.6.1 Raw data
Raw data files may be binary or ASCII, in native formats as documented by the software manufacturers. These files should

be self-describing, i.e., it should be possible to determine the dimensions of the data from the files themselves. For some software
types it may be preferable to supply raw data as an Array Data Matrix file (Section). An example of such a use-case would be
probe-level data exported from Illumina BeadStudio.

Figure 6: Simple array design with genomic sequences being represented by more than one
representative sequence

Figure 7: Complex array design graph

20

2.6.2 Processed data
Processed data may be supplied in native format, as specified for the raw data. Alternatively, these derived data may be

supplied as a Derived Array Data Matrix file (Section). The SDRF columns “Assay Name”, “Scan Name” and “Normalization
Name” may be used with tProtocol REF columns to express complex mappings from assays to normalization to individual
columns within a data matrix.

2.6.3 Data Matrices
Normally, a MAGE-TAB document will have one data matrix where rows typically represent genes (though they may also

represent other biological entities, such as exons or genomic locations), and columns typically represent samples or experimental
conditions. One can think of such a matrix as containing the data that are typically published as supplementary information for a
given paper and on which the author would perform analyses such as clustering.

The main feature of data matrices that distinguishes them from arbitrary data files is that columns in such matrices have
references to Name objects in SDRF files, for instance to particular raw data files or particular samples. This enables mapping
from biomaterials and their characteristics (especially experimental factor values) to individual processed data columns by
following the edges in the investigation design graph.

Data matrix files accompanying an SDRF are annotated as such using the SDRF columns “Array Data Matrix File” and
“Derived Array Data Matrix File”. The formats of both types of data matrix are the same, and the only distinction between them
is the type of data contained therein (unprocessed (raw) and normalized, respectively).

Syntactically, each data matrix file has two header rows, as shown in Figure 10. The first header row contains references to
“Name” objects in an SDRF file. All the Names should come from one particular column in the SDRF. That is, each column in
the data matrix is marked by unique Names from a particular column in the SDRF. The “Array Data File” and “Derived Array
Data File” columns may also be used for this purpose. The second row contains the names of the quantitation types, such as
‘signal’, ‘p-value’, or ‘log ratio(Cy3/Cy5)’ (from the MAGE-TAB perspective, these are simply labels that do not have to have a
particular meaning, but normally should be defined in the data processing protocol). The left-most field on the second header row
indicates the nature of the identifiers used in the first column, and may be one of the following:

1. “Reporter REF” or “Composite Element REF”, indicating that each row maps to a DesignElement of the given
class. It is anticipated that this will be the most common use for these data matrices.

2. A Term Source tag, expressed as “Term Source REF:<tag>” (e.g., “Term Source REF:embl”, where “embl” is
the Term Source Name), as defined in the IDF; this is used, for example, to map rows to gene annotation in public
databases.

3. A genome build: “Coordinates REF:<version >” where the version build is defined in the same way as other
Term Sources in the IDF (e.g., “Coordinates REF:ncbi34”). This heading is used to link row-level data to chromosome
coordinates in the absence of gene-level annotation.

Where the row-level annotation is not taken from the array design described by an ADF, MAGE-TAB implementations may
create virtual array designs to hold this information.

Using this mapping each column in the summary data matrix can be automatically and concisely annotated by the most
important characteristics, such as experimental factor values. An example SDRF is shown in Figure 8, with the corresponding
data matrix in Figures 9 and 10.

Figure 8: Data Matrix example: Measured data on a per-assay basis; derived data in a common file (“FGDM.txt”)

21

Figure 9: Data Matrix example: Common “Array Data Matrix File” example linked to the investigation in Figure 8

Figure 10: Data Matrix example: Common “Derived Array Data Matrix File” example linked to the investigation in
Figure 8

22

3 Examples and use-cases

3.1 Investigation Design Format
Top-level information concerning an investigation is included in a single tab-delimited format, an example of which is given

below in Table 10. A more complete specification of this format is given in Section .

MAGE-TAB Version 1.1
Investigation Title University of Heidelberg H sapiens TK6
Investigation Accession E-MEXP-12
Investigation Accession Term Source
REF

ArrayExpress

Experimental Design genetic_modification_design time_series_design
Experimental Factor Name Genetic Modification Incubation Time
Experimental Factor Type genetic_modification timepoint
Experimental Factor Term Source REF MGED Ontology MGED Ontology
Experimental Factor Term Accession
Number

MO_927 MO_738

Person Last Name Maier Fleckenstein
Person First Name Patrick Katharina
Person Email patrick.maier@radonk.ma.uni-heidelberg.de
Person Phone +496213833773
Person Address Theodor-Kutzer-Ufer 1-3

Person Affiliation
Department of Radiation Oncology, University of
Heidelberg

Person Roles submitter; investigator investigator
Person Roles Term Source REF MGED Ontology MGED Ontology

Quality Control Type biological_replicate
Quality Control Term Source REF MGED Ontology
Replicate Type biological_replicate
Replicate Term Source REF MGED Ontology
Date of Experiment 2005-02-28
Public Release Date 2006-01-03

PubMed ID 12345678

Publication Author List
Patrick Meyer; Katharina Fleckenstein, Li Li; Stephanie
Laufs; Jens Zeller; Stefan Fruehauf; Carsten Herskind;
Frederik Wenz

Publication Status submitted

Experiment Description

Gene expression of TK6 cells transduced with an
oncoretrovirus expressing MDR1 (TK6MDR1) was
compared to untransduced TK6 cells and to TK6 cells
transduced with an oncoretrovirus expressing the Neomycin
resistance gene (TK6neo).

Protocol Name GROWTHPRTCL 10653 EXTPRTCL 10654
Protocol Type grow nucleic_acid_extraction

Protocol Description
TK6 cells were grown in suspension cultures in RPMI 1640
medium supplemented with…

Approximately 10^6 cells were lysed in RLT buffer
(Qiagen). Total RNA was extracted…

Protocol Parameters media; time Extracted Product; Amplification
Protocol Term Source REF MGED Ontology MGED Ontology

SDRF File e-mexp-428_tab.txt

23

Term Source Name MGED Ontology NCI Thesaurus
Term Source File http://mged.sourceforge.net/ontologies/MGEDontology.php http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do
Term Source Version 1.3.0.1

Table 10: IDF File example

3.2 Conceptual examples for Investigation Design descriptions
In the examples that follow, each complete path through an investigation design graph has been represented by a row in the

corresponding table. Column headings in blue denote graph node identifier columns.

3.2.1 Example: Simple Iterated Design
For extremely simple applications such as the example in Figure 11, a table may be as simple as shown in Figure 12, in

which the protocol referenced by the identifier P-XMPL-10 should include all the processing needed to get from the source
sample to the final assay.

This very coarse level of granularity in describing experimental procedures may be unwieldy, but this captures the MIAME-
required mapping between source and assay, and the procedures used. We regard this as an important use case, for example in the
description of simple Affymetrix chip-based investigations. For a higher degree of granularity, where multiple protocols have
been used in the processing of Sources through to Assays, it is proposed that these protocols be given in order using repeated
“Protocol REF” columns as shown in Figure 13.

This corresponds to the MAGE version 1 coding of a BioSource object being referenced directly by a Assay object, via a
Treatment having four ordered ProtocolApplications.

A more complex alternative for such simple investigations is to explicitly indicate the materials used and created during the
investigation as nodes in the investigation design graph, as shown in Figure 14. Figure 15 describes a similar investigation to that
given in Figure 12. The “Protocol REF” columns have been omitted for clarity; see below for further examples.

Figure 11: Investigation design graph for a simple iterated
design

Figure 12: Simple, unstructured representation of sample-assay
relationships in Figure 11

Figure 13: Use of repeated protocol columns showing how protocols can
be added to a simple iterated design

24

Use of technical replicates may be indicated by branching within the graph, as shown in Figure 16. To indicate that
biological replicates were used in an investigation, the investigation design graph will typically be constructed as shown in Figure
11 or Figure 14, with additional sample annotation indicating the relationships between replicate samples. The example given in
Section illustrates how to use experimental factor value annotation for this purpose.

25

Further examples are given below of the way in which spreadsheets should be constructed to represent a variety of
investigation design graphs. Graph nodes referring to the data files (“Array Data File” and “Derived Array Data File”) have
been omitted in all subsequent examples for the sake of clarity.

Figure 14: A more complete investigation design graph for a simple iterated design

Figure 15: The design graph in Figure 14, encoded as an SDRF table

Figure 16: Investigation design graph showing an iterated design incorporating technical replicates

Figure 17: The design graph in Figure 16, encoded as an SDRF table

26

3.2.2 Example: Iterated Design single channel with sample pooling

Figure 18: Investigation design graph showing an iterated design, single channel,
sample pooling

Figure 19: The design graph in Figure 18, encoded as an SDRF table

27

3.2.3 Example: Iterated Design dual channel

Figure 20: Investigation design graph showing an iterated design, dual channel.
LabeledExtract-Dye associations can be added as a separate “Label” column

Figure 21: The design graph in Figure 20, encoded as an SDRF table

28

3.2.4 Example: Iterated Design, dual channel with dye swap

Figure 22: Investigation design graph for an iterated design, dual channel with dye swap

Figure 23: The design graph in Figure 22, encoded as an SDRF table

29

3.2.5 Example: Iterated Design with reference

Figure 24: Investigation design graph showing an iterated design with reference

Figure 25: The design graph in Figure 24, encoded as an SDRF table

30

3.2.6 Example: Iterated Design with a reference and dye swap

Figure 26: Investigation design graph showing iterated design with reference and dye swap

Figure 27: The design graph in Figure 26, encoded as an SDRF table

31

3.2.7 Example: Iterated Design with pooled reference

Figure 28: Investigation design graph showing iterated design with pooled reference

Figure 29: The design graph in Figure 28, encoded as an SDRF table

32

3.2.8 Example: Loop Design

Figure 30: Investigation design graph showing loop design

Figure 31: The design graph in Figure 30, encoded as an SDRF table

33

3.2.9 Example: Loop Design with dye swap

Figure 32: Investigation design graph showing loop design with dye swap

Figure 33: The design graph shown in Figure 16, encoded as an SDRF table

34

3.2.10 Example: Complex Time Series

For simplicity, we can collapse the cascading graph into a flatter structure, using Time as a “Factor Value” (Figure 35). This
would translate into the simplified investigation design graph in Figure 36. See Section , covering real examples for further
discussion of “Protocol REF” columns.

3.2.11 Example: Real-world example (ArrayExpress experiment E-MIMR-12)
In the real world, the conceptual examples scale up to structures such as the following. The graph for E-MIMR-12 can be

coded as shown in Figure 37. In this example, Sources are split into Samples, which are then pooled into Extracts. The grey
shading indicates the materials linked to a single assay.

Figure 34: Investigation design graph showing complex time series

Figure 35: The cascading time series design graph in Figure 34, shown as a flattened SDRF representation

Figure 36: A simpler representation of the investigation design graph in Figure 34

35

Figure 37: ArrayExpress experiment E-MIMR-12

36

3.3 Fully encoded examples of investigation design

3.3.1 Example: Real-world example (ArrayExpress experiment E-TABM-21)
Each node in the investigation design graph must be represented by an appropriate “Name” column, with the graph edges

given as “Protocol REF” columns. Several other column types may be used to convey sample annotation. Data files are
referenced using “Array Data File” and “Derived Array Data File” columns, shown here but omitted from subsequent examples
for clarity (Figure 38). Note that this example has Genotype as experimental factor.

3.3.2 Example: Real-world example (ArrayExpress experiment E-MEXP-252)
Figure 39 shows how experimental factor values may be associated with a given assay. In this case, the “Behavior”

Characteristic would be listed in the IDF as an experimental factor (Section). Other material characteristics may be included in a
similar fashion, using as many columns as necessary to encode the annotation. In this way, variations in the materials used to
generate the data set may be captured.

Figure 38: ArrayExpress experiment E-TABM-21 — a simple iterated single-channel design

Figure 39: ArrayExpress experiment E-MEXP-252 (excerpt). A series of loop design investigations comparing the brains of
worker bees which have different behaviors. Two sets of “loops” are shown here.

37

3.3.3 Example: Real-world example (ArrayExpress experiment E-MEXP-549)
Biological replicates should be represented by distinct biological sources, grouped together by common experimental factor

values. An example of this is given in Figure 40, where biological replicates (e.g., ARP1-0h, ARP2-0h and ARP3-0h) are
represented as distinct Sources sharing the same factor value (“Time”, in this example). In comparison, technical replicates are
represented by branching of the investigation design graph at intermediate steps of the experimental processing, as shown in
Figure 18.

Figure 40: ArrayExpress experiment E-MEXP-54 9. Biological replicates are indicated by shared experimental factor values
(“Time”). Protocols have been omitted for clarity.

38

3.3.4 Example: Treatment variation
Variations in the treatments used can also be indicated in the SDRF. These can be represented as distinct protocols, as

shown in Figure 41.

Alternatively, a single protocol could be used with different parameter values. In this case the parameter would have to be
linked to its protocol via the IDF header file (Figure 42). Parameter values may be specified with units (Figure 43), and included
in the Factor Values for an investigation by creating a separate “Factor Value” column containing duplicated values.

3.3.5 Example: Variation in treatment application (ChIP-chip)
For investigations where some treatments are not applied to all the samples, gaps, separated by tabs, may be left in the table

to indicate this. For example, ChIP-chip investigations typically compare a chromatin immunoprecipitate to the whole genomic
DNA extract from which it was derived:

 Figure 44: Variation in treatment represented by empty fields.

Figure 41: Simple compound treatment using different protocols for different
compounds. Two samples used in a dye swap

Figure 42: Same investigation as depicted in Figure 41, using protocol parameters rather than separate
protocols.

Figure 43: Example of Parameters with units.

39

In this example, P-XMPL-1, P-XMPL-2 and P-XMPL-3 reference a genomic DNA extraction protocol, an
immunoprecipitation protocol, and a labeling protocol, respectively. These protocol types are specified in the IDF.

3.3.6 Example: Multi-layered SDRF example
The investigation shown in Figure 45 can also be represented in a two-layer structure, in which the immunoprecipitate and

whole cell extract sample treatments are explicitly separated:

This splitting into multiple spreadsheets can take place on any Name column.

3.3.7 Example: Association of data files with assays and samples
Measured and derived data files can be associated with a specific assay. In each case, either an “Array Design File” or

“Array Design REF” column is needed, referencing either an included ADF file or an identifier in a public repository such as
ArrayExpress, respectively. Note that the repository can optionally be indicated using a “Term Source REF” column:

In addition, it is common to include normalized data from multiple assays in a single common file. Please see Figure 9,
above, for an example.

Figure 45: Two-layered example ChIP-chip investigation, sample to assay

Figure 46: Two-layered example ChIP-chip investigation, extract to assay

Figure 47: Data files linked to assays on a per-assay basis (Affymetrix)

Figure 48: Data files linked to assays on a per-assay basis (GenePix)

40

3.3.8 Example: Technology type - high-throughput sequencing
MAGE-TAB v1.1 adds support for technology types other than gene expression, e.g., high throughput sequencing. For

experiments using such technology types, the SDRF should have an “Assay Name” column instead of a “Hybridization Name”
column. The “Assay Name” column can be followed by a “Technology Type” column that describes the specific technology
used. The following table shows a hypothetical experiment using high-throughput sequencing:

Source
Name Assay Name Technology Type

Term Source
REF Protocol REF

Array Data
File Derived Array Data File

finch 1 marchesa 1 sequencing EFO Solexa Data
Acquisition run1.fastq run1_norm_log2score.txt.gz

finch 2 pinta 2 sequencing EFO Solexa Data
Acquisition run2.fastq run2_norm_log2score.txt.gz

finch 3 marchesa 1 sequencing EFO Solexa Data
Acquisition run3.fastq run3_norm_log2score.txt.gz

finch 4 marchesa 2 sequencing EFO Solexa Data
Acquisition run4.fastq run4_norm_log2score.txt.gz

finch 5 santiago 1 sequencing EFO Solexa Data
Acquisition run5.fastq run5_norm_log2score.txt.gz

Figure 49: Example of Assays with associated technology type for sequencing experiments

41

3.4 Examples of array design descriptions — Array Description Format —
ADF

The aim of the ADF component is to describe a microarray design in a spreadsheet or, for complex cases, a set of
spreadsheets. Conceptually, microarray designs are devised to measure presence and/or abundance of genomic sequence entities
in biological samples. Genomic sequences of interest are represented by one or more synthetic sequences which are in turn
arranged in one or more physical locations in the two-dimensional space of a microarray surface. Therefore, to fully describe a
microarray layout, information about genomic sequences, synthetic sequences, physical position on array and relationships
(mappings) between those must be captured.

In this section we only give two examples of ADF. For a more formal specification see Section . Figure 50 shows a simple
case, where there is a one-to-many (or one-to-one) mapping between Composite Elements and Reporters.

Note how the information about Reporter and Composite Element is duplicated, to indicate the fact the every synthetic
sequence is spotted more than one time on the array. Figure 51, in contrast, illustrates the use of two spreadsheets to capture
complex many-to-many mappings between Reporters and Composite Elements. This is provided as a future-proofing measure for
cases which cannot be described concisely using the simple layout illustrated in Figure 50. Note in Figure 52 how the relationship
between synthetic sequences (Reporter) and the genomic sequence of interest (Composite Element) is provided: as a semi-colon
(;) separated list of Reporters contributing to the signal, indicated using the “Map2Reporters” column.

In complex situations such as this, the solution presented here has two advantages:
• the redundant information for describing Composite Element is kept to a minimum;
• the number of columns necessary in the Reporter – Composite Element spreadsheet (Figure 52) is kept constant.
• creation of Final Gene Expression Matrix would be made easier since mapping to Composite Element is already done

(see Section).

Figure 50: Simple design: one Reporter / one Composite Element relationship — use of a single spreadsheet

42

3.5 Real-world example of a complete MAGE-TAB document
See the following files in the attachment:
• IDF: e-mexp-428 v1.0.idf,
• SDRF: e-mexp-428sdrf v1.0.txt,
• normalized data matrix: e-mexp-428data v1.0.txt,

Note that the ADF is not needed in this example because the SDRF references an array design in ArrayExpress.

However, a separate ADF example document is included: a-mexp-586adf_excerpt v1.0.txt.

Figure 51: Complex design: Reporters can be combined in more than one way to create Composite Elements. The
Feature/Reporter spreadsheet is shown here

Figure 52: Complex design, showing the Reporter/Composite Element spreadsheet linked to the design in Figure 51.

43

4 Correspondence to Other Models

4.1 Mapping from MAGE-TAB to MAGEv1.1
See the included file, MAGE-TAB_to_MAGEv1.1.txt, for a mapping from MAGE-TAB version 1.1 to MAGE version 1.1.

4.2 Changes from MAGE-TAB v1.0 to MAGE-TAB v1.1
1. Clarify how file packaging should work and how file references are interpreted.
2. Clarification that double quotes as escaping characters must be used to enclose entire cells.
3. Clarification on MAGE-TAB file character encodings.
4. Relax restrictions on object identifier format.
5. Clarify potential uses of Comment[] for extensibility in all MAGE-TAB files.
6. Add a MAGE-TAB Version field to IDF.
7. Added 'Investigation Accession' and 'Investigation Accession Term Source REF' to the IDF.
8. Specify ordering and cardinality of headers in SDRF and IDF files.
9. Replace “Hybridization Name” column with “Assay Name” colum in the SDRF.
10. Change other SDRF column types to support multi-technology investigations.
11. Allow multiple Characteristics of the same category in the SDRF.
12. Allow term source ref columns in ADF.
13. Allow explicit demarcation of ADF sections.
14. Clarify that factor values cannot be explicitly linked to corresponding characteristics or protocol parameters.
15. Clarify that differentially dimensioned arrays are allowed in the same investigation.
16. Explicitly allow blank lines.
17. Clarify quoting of column headers.
18. Disallow '->' to stand for an empty field.

Note that the MAGE-TAB 1.1 format is not backwards compatible with the 1.0 version, due primarily to changes 9. and 18.
These changes are simple enough, however, that parsers should be able to preserve backwards compatibility by supporting both
variations and allowing validation components to warn of violations to the rules.

	1 Introduction
	2 Specification of MAGE-TAB
	2.1 Overview
	2.1.1 Describing “top-level” MIAME information
	2.1.2 Packaging IDF and SDRF
	2.1.3 Referencing files, external databases and ontology sources
	2.1.4 Identifying objects in MAGE-TAB
	2.1.5 Referencing objects in MAGE-TAB
	2.1.6 MAGE-TAB field delimiters
	2.1.7 MAGE-TAB Headers
	2.1.8 MAGE-TAB encoding

	2.2 Investigation Design Format (IDF)
	2.2.1 IDF Specification
	2.2.2 Notes on the IDF

	2.3 Sample and Data Relationship Format (SDRF)
	2.3.1 SDRF Specification
	2.3.2 Notes on the SDRF
	2.3.3 Ordering and Cardinality
	2.3.4 Investigation Design Graph
	2.3.5 DAG Layers
	2.3.6 Coding a layered typed DAG in a spreadsheet
	2.3.7 Experimental factors

	2.4 Array Design Format (ADF)
	2.4.1 ADF Specification
	2.4.2 Notes on the ADF
	2.4.3 Spot Location: The concept of Feature
	2.4.4 Spot Content / Spot Sequence: The concept of Reporter
	2.4.5 Genomic Entities of interest: The concept of Composite Element
	2.4.6 ADF classification
	Simple design:
	Complex design:

	2.5 Protocols
	2.6 Data files
	2.6.1 Raw data
	2.6.2 Processed data
	2.6.3 Data Matrices

	3 Examples and use-cases
	3.1 Investigation Design Format
	3.2 Conceptual examples for Investigation Design descriptions
	3.2.1 Example: Simple Iterated Design
	3.2.2 Example: Iterated Design single channel with sample pooling
	3.2.3 Example: Iterated Design dual channel
	3.2.4 Example: Iterated Design, dual channel with dye swap
	3.2.5 Example: Iterated Design with reference
	3.2.6 Example: Iterated Design with a reference and dye swap
	3.2.7 Example: Iterated Design with pooled reference
	3.2.8 Example: Loop Design
	3.2.9 Example: Loop Design with dye swap
	3.2.10 Example: Complex Time Series
	3.2.11 Example: Real-world example (ArrayExpress experiment E-MIMR-12)

	3.3 Fully encoded examples of investigation design
	3.3.1 Example: Real-world example (ArrayExpress experiment E-TABM-21)
	3.3.2 Example: Real-world example (ArrayExpress experiment E-MEXP-252)
	3.3.3 Example: Real-world example (ArrayExpress experiment E-MEXP-549)
	3.3.4 Example: Treatment variation
	3.3.5 Example: Variation in treatment application (ChIP-chip)
	3.3.6 Example: Multi-layered SDRF example
	3.3.7 Example: Association of data files with assays and samples
	3.3.8 Example: Technology type - high-throughput sequencing

	3.4 Examples of array design descriptions — Array Description Format — ADF
	3.5 Real-world example of a complete MAGE-TAB document

	4 Correspondence to Other Models
	4.1 Mapping from MAGE-TAB to MAGEv1.1
	4.2 Changes from MAGE-TAB v1.0 to MAGE-TAB v1.1

