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Abstract
Various algorithms are available for predicting mRNA expression
and modeling gene regulatory processes. They differ in whether
they rely on the existence of modules of coregulated genes or build
a model that applies to all genes, whether they represent regula-
tory activities as hidden variables or as mRNA levels, and whether
they implicitly or explicitly model the complex cis-regulatory logic
of multiple interacting transcription factors binding the same DNA.
The fact that functional genomics data of different types reflect the
same molecular processes provides a natural strategy for integrative
computational analysis. One promising avenue toward an accurate
and comprehensive model of gene regulation combines biophysical
modeling of the interactions among proteins, DNA, and RNA with
the use of large-scale functional genomics data to estimate regulatory
network connectivity and activity parameters. As the ability of these
models to represent complex cis-regulatory logic increases, the need
for approaches based on cross-species conservation may diminish.
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Hidden variable: a
quantity that is not
measured directly
but whose effects can
be inferred from
measured quantities
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INTRODUCTION

The nucleus of a cell may be viewed as a
molecular computer that processes dynamic
regulatory inputs according to a program de-
fined by the static genome sequence; the out-
puts are the expression levels of all genes,
which together define the phenotype of the
cell. The computation is performed in paral-
lel everywhere along the chromosomes. DNA
carries the genetic information and, together
with a complex mixture of protein, RNA, and
other molecules, self-organizes into a three-
dimensional chromatin structure that care-
fully orchestrates gene expression. The chro-
matin responds dynamically to changes in the
cell’s environment that are relayed to the nu-
cleus by a variety of signaling pathways. Chro-
matin structure is also affected by genetic vari-

ation among individuals in coding and non-
coding sequence.

The complete genome sequences for a
variety of organisms have been determined.
In addition, high-throughput functional ge-
nomics technologies make it possible to
probe the state of the nucleus in differ-
ent ways. DNA microarrays are a partic-
ularly useful tool for measuring not only
the mRNA expression level for all genes,
but also the in vivo occupancy of the DNA
by hundreds of different DNA-binding and
other chromatin-associated proteins. Because
all these data reflect the same underlying
molecular processes, much will be gained
by modeling them in an integrated fashion
(Figure 1).

In recent years, significant progress has
been made toward the construction of a bio-
physically motivated in silico model that can
quantitatively predict the response of the
nucleus to a variety of genetic and envi-
ronmental perturbations. Such a model will
deepen our understanding of organismal de-
velopment and cellular physiology. It will
also be of value for understanding disease
processes, designing novel drugs and strate-
gies for personalized medicine, and de novo
engineering of gene regulatory networks in
microorganisms.

Many molecular players involved in the
regulatory processes inside the nucleus are
known. However, quantitative information
about their interactions with the DNA and
each other is far from comprehensive. Because
these parameters can be observed only indi-
rectly through the available high-throughput
functional genomics data, quantitative mod-
eling is required. First, the binding ener-
gies associated with specific protein-DNA and
protein-protein interactions (the strength of
the arrows in the network) must be deter-
mined. Second, the activities of hundreds of
regulatory proteins (the nodes in the net-
work), many of which are dependent on the
cellular state, are hidden variables that must
be estimated from the expression levels of the
genes they control.
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Figure 1
Gene expression modelers as prisoners in Plato’s Cave. They can observe the biomolecular processes in
the cell only indirectly, via high-throughput experiments; therefore they each build their own imperfect
representation of reality.

Available High-Throughput Data

Over the past decade, genome-scale technolo-
gies have matured from novelties to ubiq-
uitous components of molecular biology re-
search. Whole-genome sequencing projects
for all popular model organisms have been
completed, and a variety of whole-genome
functional assays based on microarray tech-
nology have been developed. The first use
of microarrays focused on expression pro-
filing of all genes in the yeast genome in
various conditions and genetic backgrounds
(21, 40). Subsequently, microarray techniques
were adopted to determine the in vivo occu-
pancy profile by transcription factors (TFs)
along the genome. These assays are based ei-
ther on chromatin immunoprecipitation mi-
croarray experiments (ChIP-chip) (42, 70) or

TF: transcription
factor or trans-factor
(if referring to both
DNA- and
RNA-binding
proteins)

ChIP-chip:
chromatin
immunoprecipitation
microarray
experiment

DamID: DNA
adenine
methyltransferase
identification

on DNA adenine methyltransferase identifi-
cation (DamID) (92). Recently, investigators
used ChIP-chip to map the RNA polymerase
complex (48), the position of nucleosomes
(97), and the acetylation and methylation state
of histone tails (68). High-throughput meth-
ods for probing DNA-protein interactions in
vitro are also available (55, 62).

Although the majority of genomic stud-
ies have focused on transcriptional regula-
tion, posttranscriptional processes related to
mRNA can also be probed using microar-
rays. The relative abundances of alternatively
spliced transcripts have been measured exten-
sively (11). Localization of mRNAs to various
parts of the cell can also be assessed using mi-
croarrays (34). Researchers have studied the
regulation of translation by isolating tran-
scripts associated with different numbers of
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TF activity:
concentration of the
actively regulating
form of a
trans-factor, which
depends on
posttranslational
modifications,
interactions, and
subcellular
localization

ribosomes and measuring the relative abun-
dances of mRNAs on a microarray (59, 98).
Genome-scale methods have also been ap-
plied to the regulation of mRNA stability (59).
Most genomic approaches to studying mRNA
decay arrest transcription (39, 50) and then
perform time courses to infer half-lives for
every transcript. Using a run-on method, in-
vestigators can compare steady-state mRNA
abundances with transcription rates to infer
mRNA stabilities (27). Finally, methods anal-
ogous to ChIP-chip can be used to identify the
target mRNAs for particular RNA-binding
proteins (89).

MODELING TRANSCRIPTION
FACTOR–DNA INTERACTION

TFs are central players in the regulation of
gene expression. By acting as adaptor proteins
between specific sites on the genome and var-
ious enzymatic complexes such as RNA poly-
merase, histone-modifiers, and chromatin-
remodelers, they orchestrate genome-wide
expression (see Figure 2). The modular orga-
nization of TFs, comprising a DNA-binding
domain (DBD) and other domains that me-
diate interaction with cofactors and commu-
nication with the signaling machinery of the

cell, has allowed evolution to optimize gene-
specificity and condition-specificity indepen-
dently. The same modularity can guide the
modeling of gene regulatory processes. Before
discussing how the condition-specific modu-
lation of TF activity can be modeled, we out-
line approaches for quantifying the sequence
specificity of the DBD of a TF, which deter-
mines, in part, the extent to which a TF con-
trols the expression of a gene.

As a first step toward modeling the
genome-wide in vivo occupancy pattern of
a TF in terms of the interactions with its
binding partners and their concentrations,
it is important to have an accurate quanti-
tative understanding of the interaction be-
tween the purified protein and naked DNA.
Most modeling studies treat a TF-target re-
lationship as something that either does or
does not exist, and even when quantitative in-
formation about the TF-DNA interaction is
available from experiments or computational
analysis, a threshold is usually imposed to en-
force a binary answer. From a biophysical
point of view, however, a quantitative math-
ematical description of TF-DNA interaction
is more natural. In thermodynamic equilib-
rium, a simple nonlinear relationship exists
between the free-energy gain associated with

Histone-

modifying

factors

Chromatin-

remodeling

factors

Protein-protein
interaction domain

DNA-binding domain

RNA

polymerase

Figure 2
Transcription factors (TFs) serve as adaptors between specific genomic loci and the various enzymatic
complexes that can either promote or repress gene expression. Complex interactions with other TFs and
chromatin-associated proteins make it challenging to model this process accurately for a living cell.

332 Bussemaker · Foat ·Ward

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

07
.3

6:
32

9-
34

7.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

ol
um

bi
a 

U
ni

ve
rs

ity
 o

n 
06

/0
4/

07
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV311-BB36-16 ARI 1 April 2007 10:27

TF-DNA binding, the concentration of the
TF, and the occupancy (or fractional satura-
tion) of the DNA binding site by the TF (see
Sidebar). Every site in the genome, in princi-
ple, is targeted by a given TF, but there is a
wide range of affinities (and therefore TF oc-
cupancies) associated with the variation in lo-
cal DNA sequence along the genome. Indeed,
a recent study showed evidence of conserva-
tion across species of the quantitative affinity
level, even for suboptimal TF binding sites
that would have fallen below the threshold
in a discrete approach to modeling regulatory
network topology (86).

Do Weight Matrices Represent DNA
or Protein?

TFs bind to different DNA sequences with
different efficiencies (82). A classic paper by
Berg & Von Hippel (8) lays out a theoreti-
cal framework for inferring a model for se-
quence specificity from a collection of exper-
imentally determined TF binding sites. It is
important to recognize that this framework
consists of two distinct layers: the first per-
taining to the thermodynamics of TF-DNA
interaction and the second related to evolu-
tionary selection. The central assumptions are
that natural selection has given rise to a cer-
tain level of sequence specificity for each TF
and that sequences that give rise to the same
physical binding affinity are equally likely to
be selected. The extent to which functional
suboptimal binding sites can occur is modeled
by a single selection parameter whose exact
value, however, remains unknown.

This reasoning leads to a formalism in
which DNA motifs bound by a particular TF
are represented as a position weight matrix
(PWM). As is often, but not always, justified
(7, 13), additivity of the binding energy for
each base pair is assumed. Provided that the
selection model assumptions are satisfied, the
discrimination energy associated with the TF-
DNA interaction at a given position in the
binding site is proportional to the logarithm of
the ratio between the frequency in the PWM

QUANTIFYING TRANSCRIPTION
FACTOR–DNA BINDING

Consider a transcription factor (TF) P binding to a DNA se-
quence S to form the TF-DNA complex PS:

P + S
kon−→←−
koff

PS 1.

The affinity of the TF for the sequence can be expressed in
terms of its equilibrium dissociation constant Kd (S ):

Kd (S ) = [P ][S]
[P S]

= koff

kon
= e�G/RT, 2.

which is directly related to �G, the Gibbs free energy of bind-
ing per mole (where R is the gas constant and T is temper-
ature). The occupancy N(S) of sequence S by transcription
factor P can be expressed as the concentration of TF-DNA
complex divided by the total concentration of DNA (bound
or unbound):

N(S) = [P S]
[P S] + [S]

= [P ]
[P ] + Kd (S)

. 3.

This equation defines how TF occupancy, with a value be-
tween zero and one, depends on both TF concentration and
the binding constant.

Position weight
matrix (PWM):
contains nucleotide
frequencies at each
position in a
collection of DNA
sequences

Position-specific
scoring matrix
(PSSM): derived
from a PWM and a
background
sequence model,
contains estimated
discrimination
energies in unknown
units

and the a priori (background) frequency for
each nucleotide (83). These pseudo-energies
can be represented in terms of a position-
specific scoring matrix (PSSM). Virtually all
existing computational methods for weight
matrix discovery are based on this formalism
(3, 51, 79, 84), and the definition of a suit-
able model for what represents background
sequence is a fundamental part of the analysis.
The weight matrices summarize the statistical
properties of a collection of TF binding sites
and therefore represent DNA sequences. Be-
cause discrimination energies are inferred up
to an unknown scaling factor, a PSSM can only
be used to rank sequences by their affinity for
the TF.

From a biophysical point of view this
formalism is unsatisfying. Weight matrices
should represent the properties of the DBD
of a TF, not the properties of DNA motifs.
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TF occupancy: the
average proportion
of time a segment of
nucleic acid is bound
by a trans-factor

Position-specific
affinity matrix
(PSAM): contains
relative affinities
directly related to the
actual discrimination
energies in physical
units

Evolutionary arguments should not be in-
voked when the goal is to model the physi-
cal interactions between a TF and the DNA
sequence of one specific organism. Moreover,
although the strength of TF-DNA interaction
varies with local DNA sequence, it should not
depend on the choice of a background model
representing the global characteristics of non-
coding DNA.

An alternative and purely biophysical ap-
proach to inferring TF binding specificity
from high-throughput genomics data has re-
cently emerged. Continuing a line of thought
started by Stormo et al. (85), Clarke and
coworkers (35, 54) laid out a statistical-
mechanical framework for interpreting TF
occupancy measurements in terms of TF-
DNA interaction energies. Several algorithms
based on the same statistical-mechanical
framework directly infer discrimination ener-
gies from in vivo or in vitro TF binding data
(22, 28, 29, 86). Djordjevic et al. (22) showed
that if one assumes that DNA sites are either
unoccupied or saturated, the inference of en-
ergy parameters reduces to the problem of
finding a classifier that distinguishes between
bound and unbound sequences, without the
need for a background sequence model. The
inferred discrimination energies, however, are
still only determined up to an arbitrary scaling
factor.

Making a different assumption, that TF
concentration is below saturation for all sites
in the genome, Foat et al. (29) developed an al-
gorithm that determines discrimination ener-
gies by fitting a nonlinear model that extends
an earlier motif-based method (14). They rep-
resented sequence specificity in the form of
a position-specific affinity matrix (PSAM). A
similar model was used by Tanay (86). In these
cases, the scale of the inferred discrimination
energies is exactly known, so that quantita-
tive predictions of relative affinity are possi-
ble. These works demonstrate the feasibility
of a direct biophysical modeling approach that
describes TF-DNA interaction not as a dig-
ital process, but as an analog process involv-
ing a wide range of relative affinities across

the genome. Accurate quantification of rela-
tive affinity may be particularly important for
modeling the temporal response of TF occu-
pancy to an increase in TF activity, or for mod-
eling the complex interplay among multiple
TFs, where multiple small energetic contribu-
tions together determine the degree to which
a DNA region is occupied by a TF complex.

PSSM Versus PSAM

In this section, we discuss in more technical
detail how the biophysically motivated PSAM
representation of TF sequence specificity re-
lates to the PSSM representation. First, to
model how the affinity Ka (S), defined as the
inverse of Kd (S), depends on DNA sequence
S, consider a reference sequence Sref with a
point mutation to base b at position j, re-
sulting in the mutated sequence Smut. Such a
mutation will give rise to an additive change
��G jb in the free energy of binding or,
equivalently, a multiplicative change wjb in the
affinity:

Ka (Smut)
Ka (Sref)

≡ wjb = e��Gjb/RT, 1.

where ��G jb = �G(Sref) − �G(Smut). The
collection of w j b values forms a PSAM.

When generalizing to sequences Smut with
more than one point mutation, it is usually as-
sumed that the free-energy contributions for
each position in the binding site are indepen-
dent and therefore additive. Equivalently, we
can multiply the w j b values for any nucleotide
sequence to obtain a predicted relative
affinity:

Ka (Smut)
Ka (Sref)

=
Lw∏
j=1

w j Smut( j ). 2.

Here Smut( j ) is the j th base in the mutated
sequence, which has length Lw. Note that by
definition w j Sref( j ) = 1 for all j = 1, . . . , Lw.

Under the evolutionary assumptions made
by Berg & Von Hippel (8), an approximate re-
lationship holds between the nucleotide fre-
quencies f in a PWM and the relative affini-
ties w in a PSAM. If the a priori (background)
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frequency of base b at any position j is given
bypb , then the frequencies in the PWM are
given by

f j b ∝ (w j b )λ pb .

Here λ is a selection parameter, introduced by
Berg & Von Hippel (8), whose exact value is
usually unknown. The case when the selection
rate is proportional to affinity (λ = 1) would
apply to in vitro selection in the absence of
saturation.

Using Structural Information

Structural information from X-ray crystallog-
raphy is available for a growing number of
TFs and TF-DNA complexes in different or-
ganisms. This structural information opens
up new possibilities for determining TF se-
quence specificity. For instance, information
about the DNA sequences bound by various
members of a particular structural class of TF
can be combined to build a model that pre-
dicts the sequence specificity of a TF from its
amino acid sequence alone (13, 45). Alterna-
tively, using the X-ray structure as a template,
researchers can use direct molecular model-
ing of the TF-DNA interface to compute the
change in binding free energy when the DNA
sequence is mutated (26, 61). Structure-based
classification of protein-DNA interaction sur-
faces can also provide insight into the deter-
minants of binding specificity (77).

PREDICTING GENE
EXPRESSION

The rich network of correlations contained
in gene expression data over multiple condi-
tions has been analyzed using many different
techniques, including clustering (24), prin-
cipal components analysis (1), bi-clustering
(16), multiple regression (32), probabilistic
graphical models (30), and information theory
(5). In what follows, we limit ourselves to algo-
rithms that are explicitly capable of predicting
mRNA expression levels. There is a wide va-

riety of ways in which such models represent
gene regulatory logic. We focus on identifying
the main conceptual and technical attributes
that distinguish the different algorithms avail-
able (see Figure 3). The earliest and perhaps
most popular class of methods relies on the
existence of modules to reduce the dimen-
sionality of the expression data to be modeled.
Modules are sets of genes that are coexpressed
across various experimental conditions, and
presumably are coregulated by a common set
of TFs. A more recent class of methods takes
a fundamentally different approach by using
the network of physical interactions between
TFs and their targets as a modeling constraint.
These methods construct a single model ca-
pable of predicting the mRNA expression for
any gene in terms of condition-specific reg-
ulator activities and gene-specific regulatory
network connectivity.

Module-Based Approaches

One of the earliest uses of mRNA expres-
sion profiling across multiple conditions was
the annotation of genes of unknown func-
tion, based on the partitioning of the set of
all genes into disjoint clusters with similar
expression profiles (24) and the principle of
guilt by association. This naturally led to a
class of algorithms for modeling gene expres-
sion regulation that relied in a fundamental
way on the existence of sets of coregulated
genes. The earliest studies used Gibbs sam-
pling approaches to look for overrepresented
motifs in the promoter regions of coregulated
genes (81, 88) without explicitly trying to pre-
dict mRNA expression profiles. In Segal et al.
(74) and Beer & Tavazoie (6), the predicted
mRNA expression profile of a gene is simply
the average of all genes in the cluster or mod-
ule to which it belongs. Both methods start
by assigning genes to clusters on the basis
of expression only. They subsequently build
classifiers that assign genes to clusters on the
basis of how likely it is that their promoter
region is bound by a particular combination
of TFs, and PSSMs are discovered as part of
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Figure 3
Classification of several existing algorithms for predicting gene expression on the basis of various
attributes. Papers are listed in the order in which their algorithms are described in the text.
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the process. On the one hand, the net effect of
a particular combination of TFs is implicitly
represented by the average mRNA expression
profile of each module. On the other hand, the
TF binding site combinations that give rise to
a given class of expression behavior are repre-
sented explicitly. These methods require ex-
pression data for a large number of conditions.
Furthermore, the expression profile of a sig-
nificant fraction of the yeast genome cannot
be assigned to any module.

A complementary class of module-based
methods uses only mRNA expression data as
input. Their distinguishing feature is that they
use the mRNA expression profile of genes
known to encode regulators such as TFs and
protein kinases to explain the expression level
of the modules. Here again, expression data
over a large number of conditions is required.
An early embodiment of this approach by
Pe’er et al. (65) used an efficient algorithm
combined with an objective function based
on mutual information to identify an opti-
mal set of key regulators for each gene. In
later work, Segal et al. (73) grouped simi-
larly regulated genes into modules and used
decision trees to define the predicted expres-
sion level of genes in a particular module as
a function of the expression level of the reg-
ulators controlling the module. These algo-
rithms are capable of predicting the expres-
sion of genes in the training set for unobserved
conditions given the mRNA levels of the regu-
latory genes. Promoter sequence and PSSMs
are not used to define module membership;
therefore the cis-regulatory logic that governs
the behavior of each module is not explicitly
modeled. Nevertheless, one still expects that
the promoters of the genes in a given mod-
ule share certain sequence features, and this
can be confirmed by a posteriori sequence
analysis.

The two classes of algorithms described
above rely fundamentally on the existence of
modules of coregulated genes to implicitly
represent either (a) the condition-specific ac-
tivity of key regulators or (b) the cis-regulatory
logic used by the transcriptional machinery

Cis-regulatory
logic: the rules
according to which
regulatory signals
represented by
multiple trans-factors
binding to the same
cis-regulatory region
of a gene are
combined

Transfactome: the
combined
condition-specific
posttranslational
regulatory activities
of all different
trans-factors

of the cell to interpret promoter sequences.
Middendorf, Kundaje, and colleagues (49, 60)
introduced an approach that does not rely
on modules and builds a single decision tree
model shared by all genes, not just one mod-
ule. This approach predicts mRNA expres-
sion of any gene on the basis of the explicit
condition-specific mRNA expression levels of
various key regulatory genes and the explicit
cis-regulatory content of the gene’s promoter
region. With this approach, researchers can
predict the expression level of a gene for which
no measurements are available in any condi-
tion, knowing only the expression level of the
putative key regulators.

Modeling TF Activities as Hidden
Variables

Fundamentally different from the module-
based approach is the use of parametric mod-
els that predict the expression level of a gene
directly from its promoter sequence. These
methods treat the posttranslational activity of
each TF as a hidden variable whose value must
be estimated from the mRNA expression lev-
els of its target genes. Most expression profil-
ing studies focus on changes in genome-wide
mRNA abundance in response to a genetic
or a physiological perturbation. Changes in
the activity of signaling pathways are com-
municated to the transcriptional machinery
through a distinct layer of control consist-
ing of TFs that bind to DNA. The natural
way to model how transcription rates change
with cell state is to parameterize TF activity
explicitly. We refer to the condition-specific
set of TF activities as the transfactome (see
Figure 4).

In general, the transcription rate of every
gene is a highly complex, nonlinear function
of the activity of the various TFs that control
it. Fortunately, we do not need to know this
function if we are only interested in modeling
the effect of changes in TF activity on mRNA
abundance relative to a reference state. Pro-
vided the changes in TF activity are not too
large, a first-order, linear model will provide
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a

b

TF activities (inferred)

 Network connectivity (inferred)

mRNA abundances (measured)

up down

up down

Cis-regulatory logic
(molecular computation)

Cis-regulatory sequences

(gene specific)

Transfactome = TF activities

(condition specific)

Transcriptome (mRNA abundances)

Figure 4
(a) Three layers of gene expression control. The degree to which gene-specific mRNA expression levels
(red/green circles, bottom row) respond to condition-specific changes in transcription factor (TF) activity
( yellow/blue squares, top row) is quantified by the regulatory susceptibility associated with each TF-target
pair (arrows, middle row). (b) The expression levels of all genes (the transcriptome) depend on the
physiological state of the cell through the regulatory activities of all TFs (the transfactome) shared
among all genes; each gene is controlled by a different noncoding sequence that determines its
susceptibility to changes in TF activity.

a reasonable numerical approximation. Note
that this argument does not rely on an assump-
tion of independence among TFs.

The degree to which the expression of a
gene is controlled by a TF is determined, at
least in part, by the presence of high-affinity
binding sites for that TF in the cis-regulatory
region of the gene. Jensen & Knudsen (44)
used nonparametric statistics to detect biases
in motif distribution in a set of genes ranked by
expression level. Chiang et al. (17) visualized
the posttranslational activity of TFs across dif-
ferent microarray experiments by calculating
a mean expression profile for all the genes
whose regulatory regions contained a spe-
cific sequence motif. The use of sequence-

based linear regression was introduced by
Bussemaker et al. (14), who used forward vari-
able selection to build a linear model for the
expression of each gene in terms of the counts
of regulatory motifs in its promoter sequence.
In the process, Bussemaker et al. (14) deter-
mined multivariate linear regression coeffi-
cients that estimate the changes in condition-
specific posttranslational activity of the TFs
that bind to the regulatory motifs. Keles
et al. (46) extended this approach by incor-
porating information about the preferred lo-
cation of motifs within promoters and using a
more elaborate parameter selection method.
Wang et al. (93) refined the sequence-
based model by multiplying motif counts by
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expression levels from TF perturbation ex-
periments (e.g., gene deletions) to filter
out nonfunctional motif occurrences. Rather
than use motifs to represent binding sites,
Conlon et al. (18) built their model from a
library of PSSMs derived by applying the al-
gorithm MDscan (56) to the regulatory se-
quences of the genes with the largest changes
in expression. Of course, not all algorithms
for inferring TF activities as hidden vari-
ables use regression. Tanay & Shamir (87) and
Nachman et al. (63) developed expectation
maximization algorithms that infer posttrans-
lational TF activities and promoter-specific
TF affinities from measured mRNA levels.

Omes Law: Linear Response Theory
for Genes

A useful analogy exists between gene ex-
pression regulation and electricity theory. In
Ohm’s Law, the susceptibility that relates the
current through a resistor to the voltage across
the resistor is known as the conductance. In
the context of gene expression regulation, TF
activity plays the role of the voltage, and the
mRNA level that of the current. It is much
easier to determine the conductance of a re-
sistor empirically than to compute it from the
material properties and geometry of the re-
sistor. Similarly, it is much easier to empiri-
cally model a gene’s regulatory susceptibility
by looking across a large number of exper-
imental conditions than to explicitly predict
it from the DNA sequence of its promoter
region.

Let A be a matrix of relative mRNA abun-
dances whose rows correspond to genes g and
whose columns correspond to conditions c;
this would be the usual expression matrix rep-
resented by a red-black-green color scheme
(24). Each column of A is a transcriptome for
a particular condition; each row is the mRNA
expression profile of a particular gene. When
the activity of one or more TFs changes and
the connectivity of the network between TFs
and target genes is defined, the response, to
linear approximation, is given by the follow-

Transcriptome: the
concentrations of all
different mRNAs

ing equation (Omes Law):

Agc =
∑

f

Ng f F f c . 3.

Here N is a network connectivity matrix
whose elements represent each gene’s suscep-
tibility to change in the activity of each TF;
its rows again correspond to genes, but its
columns correspond to TFs f. Matrix F con-
tains the TF activity changes; its rows corre-
spond to TFs, and its columns correspond to
conditions. Each column of F is a transfac-
tome for a particular condition, each row is
the activity profile of a particular TF.

Inferring Regulatory Network
Connectivity

In the linear regression methods discussed so
far, the predicted affinity of a particular pro-
moter region for a TF serves as a measure
of regulatory susceptibility, i.e., the degree
to which the expression level of the corre-
sponding gene responds to changes in TF ac-
tivity. However, as discussed above, TFs do
not bind to DNA in isolation. Instead, they
do so in complex with a variety of cofactors,
each with its own DNA-binding specificity.
It is therefore essential to consider the cis-
regulatory context of each TF binding site,
defined by its flanking sequence and possibly
more distal elements. Additional information
is required to determine to what extent a spe-
cific TF binding site contributes to the control
of the nearby gene.

A recently developed class of methods in-
fers a matrix of regulatory susceptibilities be-
tween genes and TFs by analyzing mRNA ex-
pression profiles across a large number of con-
ditions. Following early ideas by Ihmels et al.
(41), several researchers (53, 64, 91) have used
this approach to estimate gene-specific regu-
latory susceptibilities. They all begin with a
guess about the regulatory connectivities be-
tween each TF and all genes in the genome
based on experimental TF occupancy data
or promoter sequence. Subsequently, mRNA
expression data is analyzed to arrive at a

www.annualreviews.org • Predicting mRNA Expression 339

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

07
.3

6:
32

9-
34

7.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

ol
um

bi
a 

U
ni

ve
rs

ity
 o

n 
06

/0
4/

07
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV311-BB36-16 ARI 1 April 2007 10:27

Phylogenetic
footprinting: a
method for
identifying
functional
trans-factor binding
sites that looks for
conserved noncoding
sequences among
closely related
species

self-consistent pair of matrices F and N rep-
resenting (a) the activity of each TF in each
condition and (b) the susceptibility of each
gene to changes in the activity of each TF,
respectively.

For a given network connectivity matrix
N, each column of the TF activity matrix F
can be estimated by minimizing the mean-
squared error between the measured values
A and predicted values NF of the change in
mRNA expression:

F.c = arg min
∑

g

(
Agc −

∑
f

Ngf Ffc

)2

. 4.

If motif counts in promoter regions are the
elements of matrix N and only a single condi-
tion is considered, this procedure is identical
to that of Bussemaker et al. (14); ChIP-chip
log ratios (31, 53) and PSSM-based affinity
scores (18, 64) have also been used to define
matrix N.

When expression data for multiple condi-
tions is available, it is possible to re-estimate
each row of the susceptibility matrix N on the
basis of the inferred TF activity matrix F:

Ng. = arg min
∑

c

(
Agc −

∑
f

Ngf Ffc

)2

. 5.

Gao et al. (31) used this procedure to show
that, on average, only 58% of the genes whose
promoter region was bound by a TF accord-
ing to Lee et al. (52) are true regulatory
targets. This shows the value of integrating
ChIP-chip with mRNA expression data over
multiple conditions to define regulatory net-
work connectivity. Bar-Joseph et al. (4) also in-
tegrated expression with ChIP-chip data, but
pursued the complementary goal of increas-
ing the number of predicted TF targets by
using coexpression as additional evidence that
a given gene is targeted.

The full bi-linear problem is underdeter-
mined, and iteration between estimating F
and N therefore does not lead to a stable,
self-consistent solution. However, as was first
shown by Tran et al. (91) using ChIP-chip data
and later by Nguyen & D’haeseleer (64) using

PSSMs and promoter sequence, the problem
of simultaneously inferring N and F is ren-
dered well defined by the addition of a weak
bias term to the objective function that tries
to keep the network topology N either sparse
or close to an initial guess.

Using Cross-Species Conservation

Comparative genomics approaches, including
both phylogenetic footprinting of ortholo-
gous regulatory regions (23) and multispecies
techniques that do not rely on linear align-
ment of DNA sequence (25, 38, 76), have
come to dominate the recent literature on cis-
regulatory analysis. Such approaches are in-
deed of considerable practical value in weed-
ing out nonfunctional noncoding sequence
(57). One could argue, however, that a frame-
work for modeling gene expression regula-
tion based on biophysical principles should
not rely on sequence from species other than
the one under consideration. Neither the
use of evolutionary conservation nor that of
linear modeling of regulatory susceptibility
across multiple conditions provides an explicit
mechanistic explanation for the dependence
on cis-regulatory context. Neither approach
therefore can be used to predict whether a
nonfunctional TF binding site can be made
functional, or vice versa, by changing the non-
coding sequence surrounding the TF binding
site. For this, explicit modeling of the com-
plex interplay between multiple TFs and other
chromatin-associated proteins binding to the
same region is needed.

Complex Cis-Regulatory Logic

Pioneering in-depth mutational analysis of
complex promoter regions by Arnone &
Davidson (2) has helped shed light on the de-
sign principles of complex cis-regulatory mod-
ules (CRMs; not to be confused with the gene
sets called modules discussed above). Sev-
eral groups have computationally predicted
CRMs from sequence alone by using sets
of functionally related PSSMs as inputs to

340 Bussemaker · Foat ·Ward

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

07
.3

6:
32

9-
34

7.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

ol
um

bi
a 

U
ni

ve
rs

ity
 o

n 
06

/0
4/

07
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV311-BB36-16 ARI 1 April 2007 10:27

algorithms designed to detect spatial clusters
of TF binding sites (9, 36, 38, 58, 66, 69, 78).
A few studies have tried to incorporate spa-
tial and temporal variation of TF activity into
their models for complex promoters (43, 71).

Other techniques that can capture as-
pects of complex regulatory logic include the
module-based approach of Beer & Tavazoie
(6), which uses a rich cis-regulatory grammar
that takes into account binding site affinity,
position, order, and spacing of TF binding
sites. Pilpel et al. (67) identified synergistic
motif combinations on the basis of expression
coherence. Das et al. (19, 20) systematically
explored how the inclusion of terms model-
ing TF-TF interaction in a sequence-based
regression framework can capture aspects of
complex regulatory logic in yeast and humans.
Motif-based approaches have also been used
to identify cofactors of a given TF on the basis
of in vivo occupancy data (15, 79).

Theoretical investigations have shown that
various types of combinatorial logic can be
implemented in terms of the statistical me-
chanics of interacting proteins and DNA (10,
12). Wang et al. (94) explicitly modeled the
regulatory interplay between two yeast TFs
binding to overlapping DNA sites. It will also
be crucial to address the interplay between
TFs and nucleosomes (72). Looking forward,
we see biophysical models as among the most
natural and promising for modeling complex
cis-regulatory logic, provided that researchers
couple theoretical insight with data-driven es-
timation of model parameters.

Regulation of mRNA Stability

Most attempts to model mRNA expression
have focused on transcription control. Only
a handful of studies have taken computa-
tional approaches to identify the determinants
of mRNA stability regulation. Several con-
served sequence motifs were identified down-
stream of coding regions (47, 95), indicating
a likelihood that they are involved in regu-
lating the stability or localization of mRNAs.
A few genome-wide studies of mRNA stabil-

RBP: RNA-binding
protein

ity have found correspondences between se-
quence motifs and measured half-lives (37, 75,
96). Gerber et al. (33) measured genome-wide
association with mRNA to characterize the se-
quence specificity of three RNA-binding pro-
teins (RBPs) of the pumilio homology domain
(Puf) family in yeast.

Because they are determined by the bal-
ance between transcription and turnover,
steady-state mRNA abundances contain im-
plicit information about mRNA decay rates
in addition to transcription rates. Wang et al.
(93) performed an analysis of nucleotide se-
quences downstream of genes and identi-
fied several oligonucleotide motifs that cor-
relate with changes in steady-state mRNA
levels. Sood et al. (80) used a similar ap-
proach to analyze tissue-specific regulation by
microRNAs. Foat et al. (28) identified PSAMs
for two known and a number of as yet
unidentified yeast RBPs and demonstrated
that their effect on mRNA stability is strongly
regulated across hundreds of environmental
conditions. They also showed that the tran-
scriptional arrest treatment may change the
behavior of mRNA stability regulators, un-
derscoring the advantages of using steady-
state expression data.

CONCLUDING REMARKS

Given the many conceptual and technical dif-
ferences among available methods for mod-
eling mRNA expression, a natural question
is: Which ones show the best performance?
Such a comparison study was recently per-
formed for motif-finding based on sequence
alone (90). Because every method has its own
unique way of representing regulatory logic
and cell state and uses different types of data
as input, it is impossible to compare the mod-
els inferred from the data objectively. In our
view, the only reasonable way to compare al-
gorithms is through cross-validation: by as-
sessing their ability to predict expression lev-
els that are held out from the dataset on which
the algorithms are trained. The comparison
should be objective as long as researchers
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know the scoring function by which the ex-
pression values predicted by their method will
be compared with the held-out experimental
values.

It took physicists many years of painstak-
ing analysis of experimental data and the-
oretical creativity to arrive at the standard
model of particle physics that explains all
experimental observations of the interplay
between matter and three of the four fun-
damental forces. They were never able to
observe the structure and strength of the in-
teractions described by this model directly,
but they could nevertheless estimate its 19

parameters using indirect information pro-
vided by scattering events taking place in huge
particle accelerators. Molecular biologists are
in the early stages of an analogous discovery
process, enabled by the genomic revolution.
The various current computational modeling
strategies may one day converge on a standard
model for gene expression regulation based on
only the genome sequence and a biophysical
description of molecular interactions. Many
more than 19 model parameters will need to
be determined, but the utility of and under-
standing generated from such a model will
make its construction a worthwhile endeavor.

SUMMARY POINTS

1. A purely biophysical approach to modeling TF-DNA interaction that does not rely
on evolutionary assumptions and the use of background sequence models has recently
become feasible, owing to the availability of high-throughput TF-DNA interaction
data.

2. By modeling TF activities as hidden variables, rather than using the mRNA expres-
sion levels of the genes that encode them as a proxy, one can account for the rich
posttranslational regulation of TFs.

3. Model-based analysis of mRNA expression profiles over multiple conditions can be
used to estimate the regulatory connectivities between TFs and their target genes.
This approach provides an alternative to the use of evolutionary conservation to
distinguish functional from nonfunctional TF binding sites.

4. Posttranscriptional regulation of transcript stability is an important determinant of
steady-state mRNA abundance and can be modeled in close analogy to transcriptional
regulation.

FUTURE ISSUES

1. Integration of structural information about TF-DNA interaction with functional ge-
nomics data is needed.

2. Investigators will need to model how condition-specific TF activities are modulated
by signaling pathways.

3. Explicit modeling of the dependence on cis-regulatory sequence context in terms of
the complex interactions among multiple TFs and nucleosomes binding to the same
DNA region is required.
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