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Genomewide association studies are an exciting strategy in genetics, recently becoming feasible and harvesting many novel
genes linked to multiple phenotypes. Determining the significance of results in the face of testing a genomewide set of
multiple hypotheses, most of which are producing noisy, null-distributed association signals, presents a challenge to the
wide community of association researchers. Rather than each study engaging in independent evaluation of significance
standards, we have undertaken the task of developing such standards for genomewide significance, based on data collected
by the International Haplotype Map Consortium. We report an estimated testing burden of a million independent tests
genomewide in Europeans, and twice that number in Africans. We further identify the sensitivity of the testing burden to
the required significance level, with implications to staged design of association studies. Genet. Epidemiol. 2008. r 2008
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Whole Genome Association Studies (WGASs) are
examinations of a dense set of single nucleotide
polymorphisms (SNPs) across essentially all avail-
able regions of the genome to survey much of
common genetic variation for a role in heritable
disease traits. WGASs [Hirschhorn and Daly, 2005]
offer a systematic strategy to assess the influence of
common (minor allele frequency Z5%) genetic
variants on phenotypes [Risch and Merikangas,
1996]. Although the number of SNPs typed in such
a study may vary, typically between 105 and 106

SNPs, statistical analysis often involves additional
testing, so that the number of added tests dominates
the number of typed-SNPs tested. This additional
testing may involve consideration of combinations
of typed, promising SNPs that predict nearby alleles
in the original samples [Klein et al., 2005; Wellcome
Trust Case Control Consortium, 2007], of experi-
mental, second stage typing of such alleles in
additional samples [Arking et al., 2006] or of
additional sets of SNPs typed in another study for

joint analysis [Saxena et al., 2007; Scott et al., 2007;
Zeggini et al., 2007]. In all these scenarios, the WGAS
aspires to test association to more variants than
physically typed, ideally testing all common variants
in the genome. Most variants tested will not be
associated to any particular phenotype, but may
produce false-positive association signals, masking
potential true positives. Forecasting the null dis-
tribution of these false-positives is important as a
practical guideline for interpreting genomewide
association scans, akin to classical work [Lander
and Kruglyak, 1995] directing genomewide linkage
analysis of indirectly typed variants. The concrete
question is, given an association signal of a certain
nominal P-value, how unlikely is it in a WGAS that
attempts to examine all common variants?

The number of SNPs on the array may guide
multiple testing correction if only these SNPs are
tested for genetic association. In contrast, we focus
on testing not only typed SNPs but also most other
common variants in the genome. Naı̈ve, Bonferroni
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[Sidak, 1967] corrections for standard testing of
multiple, independent hypotheses are overconserva-
tive in this context: local correlation among these
tests means that effectively there are considerably
less-independent tests than (SNPs) examined. The-
oretical [Tavare et al., 1997] and simulation studies
[Lin et al., 2004] relate the number of such tests to the
number of historical recombinations, estimated to be
much smaller. Yet, no previous systematic evalua-
tion of the testing burden is available on a dense
data set that can mimic fine mapping on a near-
complete scan of variation, such as the second stage
in a multi-staged design.

Such an evaluation is particularly critical to study
designs that include a second stage of additional
genotyping [Thomas et al., 2004; Skol et al., 2006] or
analysis [Klein et al., 2005] around putative causal
SNPs that are proposed by the first-stage analysis, as
these designs do not trivially lend themselves to
significance evaluation by permuting phenotypic
labels. For 2-stage genotyping designs, common
variation is first screened for association signals
using cost-effective typing of hundreds of thousands
of SNPs [Barrett and Cardon, 2006; Pe’er et al.,
2006a,b]. Next, regions of potentially positive signals
are followed up with denser, saturated SNP sets, to
validate, refine, and strengthen the associations. As
well worked out in linkage analysis [Kruglyak and
Daly, 1998], this directed increase in marker density
around positives alters the null signal distribution
with the practical effect of mimicking a WGAS of all
6–7 million common SNPs. Hence, permuting first-
stage data with only the smaller, typed set of SNPs
underestimates expected false positives. Permuting
the second stage data is possible only for the regions
that were followed up; therefore, impossible to
implement in a nested fashion for every permutation
run of the first stage.

Implementation of a permutation procedure for
study designs with a second stage of analysis in
promising regions requires rigorous, automatic
criteria for such follow-up. As second stage analysis
may be based on post hoc review of the associated
region, pinning down the desired follow-up criteria
in an objective fashion is challenging.

The testing burden associated with examining all
common alleles does lend itself to empirical evalua-
tion from data, thanks to the Human Haplotype Map
(HapMap) ENCODE regions [The International
HapMap Consortium, 2005]. These regions offer
near-complete description of common SNPs [Pe’er
et al., 2006a,b] across 1/600 of both the physical and
the genetic length of the genome. The demonstrated
ability of these regions to represent linkage disequi-
librium among common variants across the genome
[Pe’er et al., 2006a,b; The International HapMap
Consortium, 2005] allows their use for simulating
association studies with no true signal [de Bakker
et al., 2005]. More specifically, we generate the

genetic data for a simulated (case or control)
individual at an ENCODE region by randomly
pairing two of the phased chromosomes available
from HapMap trio parents for that region. We repeat
this to obtain 2,000 individuals randomly labeled
cases or controls, mimicking a null study. The
maximal Z-score difference in allele frequencies
between ‘‘cases’’ and ‘‘controls’’ across all SNPs in
such a region is evaluated for significance, and the
P-value distribution is estimated by repeating the
simulation N 5 107 times. This distribution observes
more significant P-values than theoretically distrib-
uted P-values for a single-test statistic due to
multiple testing. We repeat this evaluation proce-
dure for the trio-base HapMap populations (CEU
and YRI), for all ENCODE regions, and for different
cohort sizes. The per-region testing burden is the
factor by which significance is exaggerated. As
ENCODE regions represent the genomewide aver-
age recombination and mutation rates, we propose
ENCODE-based extrapolation to estimate the geno-
mewide testing burden in such an association study.

We now outline a formal procedure for estimating
testing burden. Suppose the simulation considers a
region that spans a fraction g 5 1/600 of the genome
(all ENCODE regions totaling 5 Mb). For a nominal
P-value, p that is computed from the theoretical
distribution of the association statistic, we tally n(p),
the number of studies out of N simulated, at which
the best regionwide nominal P-value reaches or
exceeds p. n(p)/N is therefore an estimator of the
permutation-based P-value regionwide. The ex-
pected number H of hits—regions that have a SNP
whose score exceeds p—across the genome is there-
fore H(p) 5 n(p)/gN. Testing burden is defined to be
the ratio between the nominal and permutation-
based P-values: n(p)/pN regionwide or n(p)/pgN
genomewide. This can be estimated for every p.
Choosing p such that H(p) 5 0.05 would be relevant
for the genomewide significance threshold in the
initial cohort, whereas H(p)41 would be relevant to
a 2-stage design that carries over H(p) false-dis-
covery loci to be typed in additional samples. We
chose the middleground, focusing on the value p
relevant for a single null hit genomewide. This is
motivated by two potential practical outcomes of a
study. If a study includes several positive findings,
false-discovery rates will be much lower than one
even when H(p) 5 1, motivating interest in SNPs at
that significance level. Alternatively, even in studies
consistent with the null hypothesis of no association,
this significance level is interesting, as it is
approached or attained by the top SNPs that are
the most suggestive candidates such a study may
propose for additional investigation. We note that
this threshold does not formally control familywise
error rate, nor false-discovery rate, and is intended
to provide practical guidelines, rather than be
taken literally.

2 Pe’er et al.

Genet. Epidemiol.



We observe that when H(p) 5 1, the genomewide
burden is simply 1/p. Putting this observation to
practical use, we sort the N respective top single-hits
in each of the simulations from the smallest (most
significant) to the largest. We choose p to be the
gN th value up this list, and report the reciprocal as
the testing burden. We note that for a single
ENCODE region, the expected number of runs
achieving such a P-value among N 5 107 simulations
is gN ¼ 500 kb=3 Gb� 107 � 1; 700, and the standard
deviation of this number is s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1� gÞN

p
� 40.

This provides a practical way to estimate confidence

in estimating the gNth order statistic due to the
number of simulations being finite by considering
(gN�2s)th and (gN12s)th order statistics. Another
source of sampling error has to do with the small
fraction of the genome being analyzed. The differ-
ences in estimation across ENCODE regions can
guide us with respect to this sampling error.

Figure 1A reports the extrapolated number of
independent tests required to mimic the expectation
of the best P-value in a WGAS, i.e. the empirical
testing burden. For all ENCODE SNPs, we find the
testing burden to be around one million tests in the

Fig. 1. A. The empirical testing burden (y-axis) for all common SNPs in different ENCODE regions in the HapMap panels of Yorubans
from Ibadan, Nigeria (YRI; green) and CEPH individuals of European ancestry from Utah (CEU; orange). Testing burden is estimated

from simulated null studies of 1,000 cases, 1,000 controls extrapolated to the entire genome, as extrapolated from ENCODE. B. The

testing burden (y-axis) of each region as a function of the region’s length in centiMorgans (x-axis, left) or of the number of SNPs tested

(x-axis, right) C. The testing burden (y-axis) of all (smooth) or common (tick-marked) SNPs in a typical ENCODE region (ENr213), as a
function of the empirically evaluated P-value (x-axis). SNPs, single nucleotide polymorphisms. [Color figure can be viewed in the

online issue which is available at www.interscience.wiley.com]
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HapMap European (CEU) samples, and for all
common SNPs, we find the testing burden to be
roughly half million tests in the same population:
considerably lower than available boundsthat prove
the number of edges in the ancestral recombination
graph to exceed the number of independent tests in
a data set [Lin et al., 2004]. As such edges can be
attributed to either splits or recombinations, their
number depends on the sample size (negligible in
the context of the entire genome) and ancestral
recombination events. The formula log(k)�Ne�R in
[Tavare et al., 1997] estimates 1.1 million common
recombinations in Europeans, where k is the number
of coalescence branches considered the reciprocal of
the minor allele frequency threshold for sites
considered, i.e. k 5 20 for common SNPs; Ne is the
effective population size, �10,000 in Europeans; R is
the average number of recombination events per
meiosis, 36.

A practical, first-cut guideline for correcting
nominal P-values may be multiplying them by this
genomewide testing burden. This means, for
instance, that the probability of a WGAS in a
European population that examines all common
alleles to exhibit, by random chance alone (no true
genetic effect), a result with P-valueo10�7 is smaller
than 0.05. In the HapMap African (YRI) samples,
that have more SNPs, and less linkage disequili-
brium, testing burden is higher at one million. Since
ENCODE data are still incomplete with respect to
rare variants, they provide only a lower bound on
their associated testing burden, showing it to be
more than two-fold higher than for common alleles.

Testing burden varies across the different
ENCODE regions, which may be expected given
that ENCODE regions deliberately represent a
variety of genomic characteristics [The International
HapMap Consortium, 2003]. Empirical standard
deviation across the 10 regions amounts to 19.6%
of the testing burden, in both YRI and CEU
populations (Fig. 1A), suggesting a standard error
of 6.2% in estimating average testing burden from 10
regions. We have evaluated the sampling error due
to finite number of simulation by considering
different order statistics as described above, and
showed it to be smaller than 0.2%. We therefore
ascribe most of the observed variation in estimates to
sampling different regions. Yet, the process of
selecting of ENCODE regions made sure their
average GC content, gene content, recombination
rate, etc. were similar to the genomewide average
[The International HapMap Consortium, 2003].
Although we offer no genomewide evidence that
ENCODE is the representative of the genome in
terms of other measures such as testing burden
examined here, this premise, adopted by others
using ENCODE data, is used as a standard bench-
mark for estimating frequencies of genomewide
phenomenon in a wide domain of applications

[Birney et al., 2007]. We note that testing burden is
not strongly correlated neither with the actual
number of common SNPs in the particular region
(R2o0.03) nor with the regionwide recombination
rate (R2o0.01; see Fig. 1B). In retrospect, this justifies
extrapolation of our measurements from ENCODE
to the entire genome by physical span.

It is important to realize that testing burden is
not constant across P-values: association signals
with more extreme P-values involve more burden
(Fig. 1C). This means that accurately correcting
statistical tests by a constant factor is impossible.
Our simulations validate the formal analysis of
modeling multiple genetic tests [Dudbridge and
Koeleman, 2004; Hirschhorn and Daly, 2005] in
pointing out that restriction of such modeling to a
constant testing burden does not sufficiently capture
the full correlation structure between tests. There is
no genomewide testing burden to fit all significance
levels, but rather one can correct for such multiple
testing by a burden function, which depends on the
significance level of interest. This means that
the best practice for correcting a nominal P-value
for the entire genome is to use a lookup-table, rather
than a fixed correction factor.

In order to better understand the intuition behind
this variable testing burden, we recall that a constant
testing burden arises in the context of independent
multiple statistical tests. In contrast, dense SNPs
along the genome are partially and locally correlated
to varying extents. Formally, the pair (Za, Zb) of Z
score statistics of two correlated alleles of different,
nearby SNPs, a and b, respectively, will have a
bivariate normal distribution, with mean (0,0) and

covariance matrix

�
1 r
r 1

�
. If the allele a is signifi-

cantly associated, showing a standard normal score
Za 5 z0, then given this association, the allele b will
have a nonzero expected standard score, with the
conditional distribution being ðZbjZa ¼ z0Þ �

Nðrz0; 1� r2Þ. The chance of b to achieve as
significance level is PrðNðrz0; 1� r2 Þ4z0Þ ¼

fð�z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ=ð1þ rÞ

p
Þ. The events Xb and Xb of a

and b achieving this significance level, respectively,
thus have correlation

rðXa;XbÞ ¼
CovðXa;XbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXaÞVarðXbÞ
p

¼
fð�z0Þf �z0

ffiffiffiffiffiffi
1�r
1þr

q� �
� fð�z0Þ

2

fðz0Þfð�z0Þ

¼1�
f z0

ffiffiffiffiffiffi
1�r
1þr

q� �
fðz0Þ

which is decreasing with Z0. This means that the
more significant the P-value, the lesser the correla-
tion coefficient, or in other words, the lower the

4 Pe’er et al.

Genet. Epidemiol.



significance the less correction for multiple testing
the correlated tests require.

Fortunately, in a 2-stage design of a WGAS, the
first stage is designed for a true positive to reach
only a moderate P-value, expected to be achieved by
numerous sites [Skol et al., 2006]. Such a stage would
require less correction for multiple testing than the
final stage aiming at genomewide significance.

Finally, studies of larger size show more burden of
multiple testing (Supplementary Fig. 1). We hy-
pothesize that this effect is also related to the
increased power of larger studies to distinguish
highly- (but not perfectly) correlated causal variants.
An alternative explanation is that this observed
effect is an artifact of our oversampling design:
Rather than simulating data by a true bootstrap
procedure that samples real data without replace-
ment for each simulated data set. We are simulating
data sets of thousands of individuals based on 120
chromosomes only. We note that a similar result was
not observed in a similar set of oversampling
analyses [Dudbridge, 2006], suggesting attribution
of this increased burden to the density and redun-
dancy of ENCODE data we use.

These and other results offer considerable under-
standing of the distribution of null signals in
idealized association studies. Practical association
studies may exhibit more extreme P-values than
predicted by our study even without real effects due
to demographical and genotyping technology differ-
ences between cases and controls that create artifac-
tual hits. Furthermore, only the accumulating
experience in such studies will reveal more about
the complementary parameters describing the alter-
native hypothesis, which speak of the number and
strength of true signals. Together, the distribution of
null and true signals will enable rigorous decision
whether a given result indicates true association.
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